• Title/Summary/Keyword: 구동부몸체

Search Result 10, Processing Time 0.032 seconds

Design of Autonomous Bio-mimetic Robotic Fish with Swimming Artificial Intelligence (생체모방 자율유영의 인공지능 물고기 로봇 설계)

  • Shin, Kyoo Jae;Lee, Jeong Bae;Seo, Young Ju
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.913-916
    • /
    • 2014
  • 본 논문의 수중로봇 도미(Domi) ver1.0는 관상어용 물고기 로봇 개발을 목표로 연구 개발되었다. 물고기 로봇은 머리, 1단, 2단 몸체와 꼬리부분과 2개의 구동 관절로 구성되어 있다. 물고기 로봇의 추력에 적합한 구동부 선정을 위하여 물고기 로봇 모델링과 유영 해석을 통하여 관절 구동부가 설계되었다. 또한 물고기 로봇의 유영알고리즘은 Lighthill 운동학 해석을 기초로 생체 모방의 유영 근사화 방법을 적용하였다. 설계된 물고기는 수동유영 및 자율운영모드로 동작된다. 수동유영모드는 RF 송수신에 의하여 구현된다. 본 설계된 물고기로봇 도미 ver1.0은 수중 현장시험 평가을 통하여 추력, 내구성, 방수성 등의 성능이 우수함을 확인하였다.

Stiffness Analysis of Spring Mechanism for Semi-Automatic Gripper Motion of Tendon-Driven Remote Manipulator (와이어 구동방식 원격조작기용 그리퍼의 반자동 파지 및 해제 동작을 위한 스프링 강성 분석)

  • Yu, Seung-Nam;Lee, Jong-Kwang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1405-1411
    • /
    • 2012
  • Remote handling manipulators are widely used for performing hazardous tasks, and it is essential to ensure the reliable performance of such systems. Toward this end, tendon-driven mechanisms are adopted in such systems to reduce the weight of the distal parts of the manipulator while maintaining the handling performance. In this study, several approaches for the design of a gripper system for a tendon-driven remote handling system are introduced. Basically, this gripper has an underactuated spring mechanism that is combined with a slave manipulator triggered by a master operator. Based on the requirements under the specified tendon-driven mechanism, the connecting position of the spring system on the gripper mechanism and kinematic influence coefficient (KIC) analysis are performed. As a result, a suitable combination of components for the proper design of the target system is presented and verified.

A Milli-Scale Double-sided Crawling Robot (양면 주행이 가능한 소형 12족 주행 로봇)

  • Kim, Sung-Hyun;Jung, Gwang-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.356-361
    • /
    • 2020
  • This paper presents a lightweight milli-scale crawling robot that can crawl on both sides, which was inspired by the movement of insects. This robot has an excellent ability to overcome obstacles, such as the narrow gaps and the rough terrain. In addition, the robot can crawl steadily and rapidly through triangular alternation, such as ants or cockroaches. The process of smart composite microstructures (SCM) was employed to make a lightweight robot structure. The SCM process replaced the conventional mechanical parts with flexure joints and composite links, which allows the weight of the robot to be reduced. In addition, the robot structure was robust against external impacts owing to the compliance of the constituent materials. Using the SCM process, the robot weighed only 32g with twelve legs in total on both sides. The robot showed a crawling speed of 0.52m/s on the front side and 0.42m/s on the backside.

A Four-Wheeled Mobile Robot with Omnidirectionality (전방향성을 갖는 네 바퀴 이동로봇)

  • Kang, Su Min;Sung, Young Whee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.21-27
    • /
    • 2022
  • Traditional automobile or 2-wheeled robot have limitations on mobility because of their mechanical structure. As traditional automobile is being replaced by electric cars, robot technology is applied to the car industry. In robotics, many researchers worked on omnidirectional mobile robot and produced lots of noticeable results. However in many of the results, specialized wheels such as Mecanum wheels are required. That imposes restrictions on robot speed and outdoor driving. We proposed a 2-wheeled modular robot that has omnidirectional mobility without using specialized wheels. In this paper, we propose a 4-wheeled omnidirectional mobile robot that consists of those two modular robots. The proposed robot adopts electric brakes to combine wheel housings and the robot body or to separate wheel housings from the robot body. Two absolute-type encoders and four incremental encoders are used to control the position of the wheel housing and velocities of the wheels. The proposed robot has omnidirectional mobility and can move fast and outdoor with normal tire wheels. We implemented the proposed robot and the feasibility and stability of the robot is verified by two separate experiments.

Development of Autonomous Bio-Mimetic Ornamental Aquarium Fish Robotic (생체 모방형의 아쿠아리움 관상어 로봇 개발)

  • Shin, Kyoo Jae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.5
    • /
    • pp.219-224
    • /
    • 2015
  • In this paper, the designed fish robots DOMI ver1.0 is researched and development for aquarium underwater robot. The presented fish robot consists of the head, 1'st stage body, 2nd stage body and tail, which is connected two point driving joints. The model of the robot fish is analysis to maximize the momentum of the robot fish and the body of the robot is designed through the analysis of the biological fish swimming. Also, Lighthill was applied to the kinematics analysis of robot fish swimming algorithms, we are applied to the approximate method of the streamer model that utilizes techniques mimic the biological fish. The swimming robot has two operating mode such as manual and autonomous operation modes. In manual mode the fish robot is operated to using the RF transceiver, and in autonomous mode the robot is controlled by microprocessor board that is consist PSD sensor for the object recognition and avoidance. In order to the submerged and emerged, the robot has the bladder device in a head portion. The robot gravity center weight is transferred to a one-axis sliding and it is possible to the submerged and emerged of DOMI robot by the breath unit. It was verified by the performance test of this design robot DOMI ver1.0. It was confirmed that excellent performance, such as driving force, durability and water resistance through the underwater field test.

Automatic Noncontact Ultrasonic Inspection Technique (비접촉식 초음파탐상방법 자동화 기술)

  • Kim, Y.G.;Ahn, B.Y.;Lee, S.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.25-31
    • /
    • 1994
  • A system for EMAT, which generates ultrasound by electro-magnectic forces and performs nondestructive testing in noncontact, was established. By linking it with a 3 axis scanning system and a data acquisition and processing system the automation of EMAT testing was attempted. A EMAT sensor was fabricated and the directivity pattern of it was measured. To be suitable automation, it has a transmitter and a receiver in one case and the main beam direction of it can be controlled by the frequency of driving signal. A program which controls the EMAT system, the 3 axis scanner and the data acquisition and processing system was developed. It also processes acquired data and displays the processing results. IBM-PC/AT compatible PC was used as main controller and the stratage of the program is emulation of real devices on the PC monitor. To provide the performance of the established EMAT system, two aluminium blocks containing artificial flaws and a welded aluminium block were tested. The result of the tests were satisfactory.

  • PDF

Transmission Characteristics on Wire-Driven Links of a Bridge Transported Servo Manipulator for the ACP Equipment Maintenance (사용후핵연료 차세대관리 공정장치 유지보수용 천정이동 서보 매니퓰레이터 와이어 구동부 동작특성)

  • 박병석;진재현;송태길;김성현;윤지섭
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.189-199
    • /
    • 2004
  • A bridge transported servo manipulator (BTSM) system for the advanced spent fuel conditioning process (ACP) has been developed to overcome the limitation of access, which is a drawback of mechanical master-slave manipulators (MSM) for the equipment maintenance. The servo manipulator is composed of a slave manipulator attached to the telescoping tubesets equipped with the overhead bridge installed at a hot cell and a master manipulator installed at an out-of-hot cell. Each manipulator has 7 degrees-of-freedom (DOF): a body rotation, an upper-arm tilt, a lower-arm tilt, a lower-arm rotation, a wrist pan & tilt, and a grasp motion. A wire-driven mechanism for a lower-arm rotation, a wrist pan and tilt, and a grasp motion of the manipulator has been adopted to increase the handling capacity compared to the manipulator weight and decrease the friction. The main disadvantage of the wire-driven mechanism is that if one link is in motion, other links can be affected. In this paper, the transmission characteristics among the wire-driven links have been formulated to overcome this drawback. The unexpected behaviors are confirmed by analyses of transmission characteristics as well as experiments. Also, the experimental results show that the unexpected behaviors are greatly decreased by the proposed compensation equations.

  • PDF

A Study on Elastic Modulus Predictions and Dynamic Characteristics Analysis of Composite Structures using CFRP (HPW193/RS1222) (CFRP (HPW193/RS1222)소재 복합재의 탄성 강성 예측 및 동적 특성 분석에 관한 연구)

  • Lee, Jae Eun;Kang, Deok Soo;Lee, Byung Ho;Baek, Joo Hyun;Kim, Jung Gon;Hwang, Ki Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.821-828
    • /
    • 2016
  • Recently, the use of composite materials in the defense system has grown dramatically. The strength/weight and stiffness/weight ratios of composite structures are normally higher than of metals. Woven composites, especially, are increasingly considered for a variety of applications, because they offer good workability for complicated structures. HPW193/RS1222 is one of the most famous woven composites and has been used in many types of Korean military equipment, such as antenna pedestals and radar systems. In this study, we predicted the elastic modulus of HPW193/RS1222 using the principles of unidirectional composite stiffness predictions, such as ROM (Rule of Mixture), HSR (Hart Smith 10% Rule), CLA (Classical Laminate Analysis) and LAP (Laminate Analysis Program). We compared the dynamic characteristics with the experimental predictions and finite-element analysis (FEA). From our results we concluded that transversely isotropic materials are similar to isotropic materials when the shape of the composite structure is complicated.

Development of a CNN-based Cross Point Detection Algorithm for an Air Duct Cleaning Robot (CNN 기반 공조 덕트 청소 로봇의 교차점 검출 알고리듬 개발)

  • Yi, Sarang;Noh, Eunsol;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.1-8
    • /
    • 2020
  • Air ducts installed for ventilation inside buildings accumulate contaminants during their service life. Robots are installed to clean the air duct at low cost, but they are still not fully automated and depend on manpower. In this study, an intersection detection algorithm for autonomous driving was applied to an air duct cleaning robot. Autonomous driving of the robot was achieved by calculating the distance and angle between the extracted point and the center point through the intersection detection algorithm from the camera image mounted on the robot. The training data consisted of CAD images of the duct interior as well as the cross-point coordinates and angles between the two boundary lines. The deep learning-based CNN model was applied as a detection algorithm. For training, the cross-point coordinates were obtained from CAD images. The accuracy was determined based on the differences in the actual and predicted areas and distances. A cleaning robot prototype was designed, consisting of a frame, a Raspberry Pi computer, a control unit and a drive unit. The algorithm was validated by video imagery of the robot in operation. The algorithm can be applied to vehicles operating in similar environments.

Geological History and Landscapes of the Juwangsan National Park, Cheongsong (국립공원 주왕산의 지질과정과 지형경관)

  • Hwang, Sang Koo;Son, Young Woo;Choi, Jang Oh
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.235-254
    • /
    • 2017
  • We investigate the geological history that formed geology and landscapes of the Juwangsan National Park and its surrounding areas. The Juwangsan area is composed of Precambrian gneisses, Paleozoic metasedimentary rocks, Permian to Triassic plutonic rocks, Early Mesozoic sedimentary rocks, Late Mesozoic plutonic and volcanic rocks, Cenozoic Tertiary rhyolites and Quaternary taluses. The Precambrian gneisses and Paleozoic metasedimentary rocks of the Ryeongnam massif occurs as xenolithes and roof-pendents in the Permian to Triassic Yeongdeok and Cheongsong plutonic rocks, which were formed as the Songrim orogeny by magmatic intrusions occurring in a subduction environment under the northeastern and western parts of the area before a continental collision between Sino-Korean and South China lands. The Cheongsong plutonic rocks were intruded by the Late Triassic granodiorite, which include to be metamorphosed as an orthogneiss. The granodiorite includes geosites of orbicular structure and mineral spring. During the Cretaceous, the Gyeongsang Basin and Gyeongsang arc were formed by a subduction of the Izanagi plate below East Asia continent in the southeastern Korean Peninsula. The Gyeongsang Basin was developed to separate into Yeongyang and Cheongsong subbasins, in which deposited Dongwach/Hupyeongdong Formation, Gasongdong/Jeomgok Formation, and Dogyedong/Sagok Formation in turn. There was intercalated by the Daejeonsa Basalt in the upper part of Dogyedong Formation in Juwangsan entrance. During the Late Cretaceous 75~77 Ma, the Bunam granitoid stock, which consists of various lithofacies in southwestern part, was made by a plutonism that was mixing to have an injection of mafic magma into felsic magma. During the latest Cretaceous, the volcanic rocks were made by several volcanisms from ubiquitous andesitic and rhyolitic magmas, and stratigraphically consist of Ipbong Andesite derived from Dalsan, Jipum Volcanics from Jipum, Naeyeonsan Tuff from Cheongha, Juwangsan Tuff from Dalsan, Neogudong Formation and Muposan Tuff. Especially the Juwangsan Tuff includes many beautiful cliffs, cayon, caves and falls because of vertical columnar joints by cooling in the dense welding zone. During the Cenozoic Tertiary, rhyolite intrusions formed lacolith, stocks and dykes in many sites. Especially many rhyolite dykes make a radial Cheongsong dyke swarm, of which spherulitic rhyolite dykes have various floral patterns. During the Quaternary, some taluses have been developed down the cliffs of Jungtaesan lacolith and Muposan Tuff.