• Title/Summary/Keyword: 구동기 동역학

Search Result 47, Processing Time 0.025 seconds

다물체동역학 시스템의 불확실성 분석 및 설계

  • Yu, Hong-Hui
    • Journal of the KSME
    • /
    • v.54 no.2
    • /
    • pp.41-45
    • /
    • 2014
  • 이 글에서는 조인트, 부싱, 댐퍼 그리고 구동기 등으로 연결된 일반적 다물체계의 질량, 강성, 감쇠, 기하학적 제원 등에 존재하는 불확실성의 영향을 동적 해석 및 설계 시 어떻게 체계적으로 고려해야 하는지 대표적인 방법을 중심으로 관련 내용을 소개하고자 한다.

  • PDF

A study on design, experiment control of the waterproof robot arm (방수형 로봇팔의 설계, 실험 및 제어 연구)

  • Ha, Jihoon;Joo, Youngdo;Kim, Donghee;Kim, Joon-Young;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.648-657
    • /
    • 2014
  • This paper is about the study on a newly developed small waterproofed 4-axis robot arm and the analysis of its kinematics and dynamics. The structure of robot arm is designed to have Pitch-Pitch-Pitch-Yaw joint motion for inspection using a camera on itself and the joint actuator driving capacity are selected and the joint actuators are designed and test for 10m waterproofness. The closed-form solution for the robot arm is derived through the forward and inverse kinematics analysis. Also, the dynamics model equation including the damping force due to the mechanical seal for waterproofness is derived using Newton-Euler method. Using derived dynamics equation, a sliding mode controller is designed to track the desired path of the developed robot arm, and its performance is verified through a simulation.

A Study on an Input-Output Controller Based on the Time-Scale Properties of an Underwater Vehicle Dynamics (수중 운동체의 운동 특성을 고려한 입/출력 제어기 구성에 관한 고찰)

  • Jo, Gyung-Nam;Seo, Dong-C.;Choi, Hang-S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.469-476
    • /
    • 2008
  • In this paper, it is shown that an input-output (I/O) feedback linearized controller can be designed rationally by utilizing the time-scale properties of heave and pitch for an underwater vehicle. It is assumed that the dynamics of the vehicle is restricted to the vertical plane. An output-feedback control is designed, which stabilizes steady cruising paths. It is shown that the vehicle dynamics with acceleration as output becomes minimum phase. The dynamics can be transformed into a reduced system through a kind of partial linearization and singular perturbation technique. The reduced system is not only minimum phase but also exactly I/O linearizable via feedback. The I/O dynamic characteristics of the heave and pitch modes can be made linear and decoupled. Furthermore it becomes independent of cruising condition such as vehicle velocity. This study may help for designing autopilot systems for underwater vehicles.

Neural Network Based Adaptive Control for a Flying-Wing Type UAV with Wing Damage (주익이 손상된 전익형 무인기를 위한 신경회로망 적응제어기법에 관한 연구)

  • Kim, DaeHyuk;Kim, Nakwan;Suk, Jinyoung;Kim, Byungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.342-349
    • /
    • 2013
  • A damage imposed on an unmanned aerial vehicle changes the flight dynamic characteristics, and makes difficult for a conventional controller based on undamaged dynamics to stabilize the vehicle with damage. This paper presents a neural network based adaptive control method that guarantees stable control performance for an unmanned aerial vehicle even with damage on the main wing. Additionally, Pseudo Control Hedging (PCH) is combined to prevent control performance degradation by actuator characteristics. Asymmetric dynamic equations for an aircraft are chosen to describe motions of a vehicle with damage. Aerodynamic data from wind tunnel test for an undamaged model and a damaged model are used for numerical validation of the proposed control method. The numerical simulation has shown that the proposed control method has robust control performance in the presence of wing damage.

Development of Program for Designing Barrel Cam of Machine Making Paper Cups (종이컵 성형기용 배럴 캠 설계 프로그램 개발)

  • Kim, Wook-Hyeon;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.433-438
    • /
    • 2011
  • A machine that makes paper cups has many parts, including a barrel cam, an index, and a turret. When the barrel cam, which is the main operating part of the machine, rotates, it pushes the roller fixed on the index, and paper cups are formed as the turret connected to the index rotates. Therefore, the performance of the machine is affected by the barrel cam. In this study, the program for designing barrel cam, which creates the profile of the cam is developed using MATLAB. This profile is used to develop a 3D CAD model by using a 3D CAD program. Dynamic models containing the barrel cam are created on the basis of the profile and 3D laser scan of the barrel cam. Further, the rotation angle of the index in the machine is measured using a high-speed camera. The rotation angles of the dynamics models are compared to verify the effectiveness of the program.

A Study of Development for Various Aircraft Simulator based on Single Platform (단일 플랫폼 기반의 다기종 항공기 시뮬레이터 개발에 관한 연구)

  • Choe, Seong-Hwan;Gang, Hyeong-Gu;Kim, Seong-Won;Park, Ji-Hyeok;Kim, Byeong-Su
    • 한국항공운항학회:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.5-8
    • /
    • 2016
  • 본 연구에서는 다양한 급의 항공기를 단일 플랫폼에서 모의할 수 있는 시뮬레이터를 개발하기 위해 표준 비행역학 모의모델의 구조 및 인터페이스를 설계하였다. 비행역학 모의모델은 다양한 급의 항공기를 모의하기 위해 공통적으로 적용할 수 있는 비행동역학 모델과 환경모델은 항공기 기종에 관계없이 동일하게 설계하였고, 엔진, 구동기, 비행제어, 랜딩기어 모델과 같이 항공기 기종에 따라 차이가 있는 모델은 사용자가 선택하여 사용할 수 있도록 설계하였다. 또한 복잡한 구조의 소프트웨어를 사용자가 쉽게 접근하여 수정/모의할 수 있도록 비행역학 모의모델의 입력파일을 텍스트 기반인 XML 형식으로 설계하였다.

  • PDF

The Separating Cover Using an Explosive Bolt and Spring Lever (폭발볼트 및 스프링 레버를 이용한 발사관 분리식 덮개)

  • Choi, Won-Hong;Shin, Sang-Mok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.922-931
    • /
    • 2017
  • This research paper describes design procedures and those verification with multi-body dynamic analysis and an experiment for the development of an unprecedented type of canister cover, named as the separating cover. In order to overcome drawbacks from the precious rupture type and actuator driven cover, the separating cover was suggested. It has the simplest structure composed of the previously developed explosive bolt and a spring-lever driven system. First of all, mechanical feasibility with proposed design parameters based on mathematical modeling was confirmed through dynamic analysis and then its results showed good agreement with the followed empirical results acquired from a high speed camera. On top of that, a parametric study was conducted to identify the effect of each design parameter on separating performance. It is highly expected that this research contributes to provide military industries with a brand new canister cover having simplicity and cost efficiency and thus it will be very useful in MLRS(Multiple Launch Rocket System).

Conceptual Design of Electric-Pump Motor for 50kW Rocket Engine (50kW급 로켓 엔진용 전기펌프 모터의 개념 설계)

  • Kim, Hong-Kyo;Kwak, Hyun-Duck;Choi, Chang-Ho;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.175-181
    • /
    • 2018
  • Electric pump system is new technology for next generation propulsion unit. The system has simple structure which dose not need gas generator, injector and turbine and might better pump for low cost and low payload rocket. Therefore, this paper suggests conceptual design of electric-pump Permanent-Magnet Synchronous Motor (PMSM) which has 50 kW & 50,000 RPM for rocket. To satisfy the system's requirement, electromagnetic analysis is conducted for suitable inner and outer diameter of stator and rotor which uses 4000 Gauss cylinder magnet and Inconel 718 can to fix whole rotor. Futhermore, to confirm rotational vibration, rotordynamics analysis is conducted. By this analysis, Campbell diagram is printed. From the diagram, natural frequency could be determined for the only motor and dynamo meter test bench.

Dynamics Modeling and Vibration Analysis of Momentum Wheel for the Control Moment Gyros (제어모멘트자이로용 모멘텀휠의 동역학모델링과 진동분석)

  • Park, Jongoh;Myung, Hyunsam;Lee, Henzeh;Bang, Hyochoong;Choo, Yeongyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.180-185
    • /
    • 2009
  • Actuator-induced disturbance is one of the crucial factors of spacecraft attitude pointing and stability in fine attitude control problems. The control moment gyros (CMGs) are known as very attractive actuators from the point of high power and low weight. In order to develop a CMG as an actuator for fine controls, CMG-induced disturbances should be analyzed. Therefore, this paper aims to develop an analytic model and predict the effect of disturbances of CMGs by assuming static and dynamic imbalances. The proposed model is induced by the Lagrangian method on the basis of the small signal assumption. In this research, mechanical system of the CMG is designed and the main components of CMG are producted.

  • PDF

Design of Large-size Marionette Robot Mechanism System Capable of Stage Performances (무대 공연이 가능한 대형 줄 인형 로봇 기구 시스템 설계)

  • Lim, Hong-Seok;Cho, Min-Su;Choi, Soon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1205-1211
    • /
    • 2012
  • A marionette is a moving puppet that can be made to perform several actions by pulling wires connected to the puppet. Because a marionette is operated by hand, a stage performance with a human-sized marionette is impossible. However, a marionette robot operated using a wire controller could be used as a human-sized marionette to conduct a stage performance with other robots or actors. In addition, by using mobile stages that utilize mobile platforms, a wire controller, and the marionette robot body, the large marionette robot system designed in this study can be made to rotate and translate freely in a stage performance. The feasibility of the structure of the marionette robot wire control system is verified by using dynamics analysis. Furthermore, the efficiency and safety of the robot is demonstrated by manufacturing and operating a prototype robot.