• Title/Summary/Keyword: 교통 및 신호 시스템

Search Result 230, Processing Time 0.023 seconds

A Study on the traffic signal system based on Visible Light Communication (가시광 통신 기반의 교통 및 신호 시스템에 관한 연구)

  • Geum, Dong-Woo;Kwon, Kyung-Dong;Chae, Yun-Chang;Hwang, Ji-Young;Kim, Cheol-Min;Kim, So-Yong;Koh, Seok-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.668-670
    • /
    • 2018
  • Recently, VLC(Visible Light Communication), which is a technology to communicate wirelessly by carrying information in lights based on LED, is getting attention. If we use the VCL, we don't need to receive authorization because it uses the existing industrial infrastructure(LED infrastructure) and frequency band together and there is the little possibility of interference and it has a high level of security by removing visible light in a portion where data transfer is not required. These are the advantage of VCL. In this paper, we study the traffic and signal system based on Visible Light Communication with consideration for these advantages.

  • PDF

Lightweight Residual Layer Based Convolutional Neural Networks for Traffic Sign Recognition (교통 신호 인식을 위한 경량 잔류층 기반 컨볼루션 신경망)

  • Shokhrukh, Kodirov;Yoo, Jae Hung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.105-110
    • /
    • 2022
  • Traffic sign recognition plays an important role in solving traffic-related problems. Traffic sign recognition and classification systems are key components for traffic safety, traffic monitoring, autonomous driving services, and autonomous vehicles. A lightweight model, applicable to portable devices, is an essential aspect of the design agenda. We suggest a lightweight convolutional neural network model with residual blocks for traffic sign recognition systems. The proposed model shows very competitive results on publicly available benchmark data.

Development of a Micro-Simulator Prototype for Evaluating Adaptive Signal Control Strategies (교통대응 신호제어전략의 평가를 위한 미시적 시뮬레이터의 원형 개발)

  • 이영인;김이래
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.143-160
    • /
    • 2001
  • Micro-simulation models have been recognized as an efficient assessment tool in developing traffic signal control technologies. In this paper a prototype of a microscopic simulation model which can be applied to evaluate the performance of traffic-adaptive signal control strategies was developed. In the simulation process, space-based arrays were appled to estimate parameters of car following and lane changing models. Two levels of link types, a micro-type and macro-type links, were also embodied in the simulation process. The proposed model was tested on a test network consists of 9 intersections. The performance of the proposed model was evaluated in link by link comparisons with the results of NETSIM. The results show that the proposed model could appropriately simulate traffic flows of the test network. The model also produces traffic adaptive signal timings, cycle lengths and green times for turning movements, based on the detector data. It implies that the optimization process of the model produces reasonable signal timings for the test network on the cycle basis.

  • PDF

Fuel consumption effects of transportation improvement options using mesoscopic traffic simulator (메조모형 시뮬레이터를 이용한 교통운영방식의 연료소모량 분석)

  • 최기주;이건영;오세창
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.19-38
    • /
    • 2002
  • To evaluate the effects of transportation system operation, usually measures of effectiveness(MOE) such as travel time, space mean speed, stop/delay ratio have been used. But, energy consumption as well as the existing MOE in transportation receives more attention as an alternative MOE in transportation operation. The purpose of this study is a development of procedure, which could measure the relative energy consumption for each alternative and compare the results. A mesoscopic simulator called INTEGRATION is used to evaluate the operation of high occupancy vehicle lane, signal optimization, lane expansion, and the application of ITS. Among those, the application of ITS shows the greatest effectiveness in energy reduction, and then lane expansion, signal optimization, and the operation of high occupancy vehicle lane in the order named. Because we don't consider the characteristics of vehicle class, Potential demand and the simulation time is just for an hour. it is recommended that a procedure for precise economic analysis and an improvement in methodology are needed in the future for the expanded application of this study.

Vehicle Detection and Tracking Using Difference Frame Image for Traffic Measurement System (교통량 측정 시스템에서의 프레임간 차영상을 이용한 차량 검출 및 추적)

  • Kim, Hyung-Soo;Hwang, Gi-Hyeon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.17 no.1
    • /
    • pp.32-39
    • /
    • 2016
  • Intelligent Transport Systems (Intelligent Transportation System: ITS) is a system for inducing a flow of ideal car for using the most advanced technology, it is determined the status of the road, and take appropriate action. In order to be measured at various time points, and is managed, the information about the traffic situation is used image using a computer mainly. The image processing using a computer, it is an easy way to collect parameters of the various traffic in real time, technology has developed more and more. Vehicle detection of transport parameters of intelligent transportation system is a very important technology basically. Therefore, technology detection method using car background images and the contour line extraction method using an edge is used, however, problems have been raised on the accuracy of the detection rate.

Effectiveness Assesment of Bus Signal Priority Systems (버스우선신호시스템 적용 효과 평가)

  • Lee, Ho-Joon;Lee, Sang-Soo;Lee, Choul-Ki;Kim, Nam-Sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.57-66
    • /
    • 2012
  • This study intended to evaluate the operational performance change from the introduction of the bus signal priority system using the field data. To complete the objective, travel time and volume data were collected from the before and after study, then the distribution of individual vehicle's travel time and the difference of travel time and traffic volume were compared respectively. Analysis results showed that no significant volume change was observed from both passenger vehicle and bus for the major and cross streets. It was identified that the quality of travel time distributions of passenger vehicle and bus was improved after introducing the bus signal priority system. In terms of average speed, passenger car in a major direction increased by 6.5% and bus increased by 10.5% in general. Statistical tests showed that those speed differences were statistically significant at the 95% of confidence level. The results of this paper will be a good source for further research in the area of bus signal priority control.

An Analysis of Effectiveness for Permissive Warrants on the Restrictive Left-Turn Signal Control in Urban Arterial Roads (도시 간선도로에서 제한적 좌회전 신호운영의 적용기준 및 효과분석에 관한 연구)

  • Jeong, In-Taek;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.17-28
    • /
    • 2009
  • There are many limitations in dealing with rapidly changing traffic demand in urban cities. Thus recently, traffic operation and management skills are more emphasized rather than the expansion of traffic facilities. In particular, in the interrupted flow formed by signalized intersections, it is quite important to give optimal signal timing to each intersection with consideration of progression. However, as fixed signal times per direction can affect passing capacity in signalized intersections, the present four-signal phase including a left-turn signal has many limitations, including reduction of directional road capacity when traffic demand is increases dramatically during peak hours. Because of this problem, lots of studies about internal metering techniques for oversaturated signal control skills have progressed but these techniques are not used widely due to the absence of detectors for queue sensing in real-time signal control systems. In this research, a new methodology called the "restrictive left-turn signal control", which is already used at the intersection above Samsung subway station, is suggested in order to reduce control delay of urban arterial roads. The restrictive left-turn signal control allows a driver to make a U-turn and then a right turn instead of turning left in that intersection. With this change, the restrictive left-turn signal control can contribute to increased intersection capacity by reducing the number of signal phases and maximizing the through phase time. However, road structure and traffic conditions at the target intersections should be considered before the adoption of the proposed signal control.

A Study on Developing the TCP/IP Application Communication Protocol for the Standard Traffic Signal Controller (표준규격 교통신호제어기에서 TCP/IP 통신프로토콜 제정방안 연구)

  • Han, Won-Sub;Hyun, Cheol-Seung;Lee, Ho-Won;Joo, Doo-Hwan;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.5
    • /
    • pp.71-84
    • /
    • 2009
  • The communication between the center system and the local controller in the Traffic Signal Controller Specification has been specified by a communication line for the exclusive use and the analog modem serial protocol. Therefore, it can't be adapted in the ITS communication network of the TCP/IP protocol being constructed in the local city. The international and domestic ITS device's communication specification has adapted the DATEX-ASN data exchange technique based on the ethernet communication network. So, this study was performed by the purpose of developing the application communication protocol's standard draft based on the TCP/IP communication protocol for the traffic signal controller, to be able to constitute the traffic signal control system in the ITS communication network. The communication format for 23 items of control, status, and database request etc. which are specified in the standard traffic signal controller was developed by appling the DATEX-ASN data interface procedure and structure which are KS ISO X 14827 Part1, 2, ISO/ DIS 15784 Part-3. To test the developed protocol, the application program for the communication items was developed and according to the test result, the encoding and the decoding transection for all communication items was possible.

  • PDF

A Comparison Study of Different Offset Transition Lengths in Simulation Environment (모의실험 환경에서의 옵셋전이길이 비교연구)

  • Kim, Jin-Tae;Chang, Myung-Soon;Park, Jae-Wan
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.43-52
    • /
    • 2005
  • Signal timing transition has recently been highlighted with Adaptive Traffic Control Systems (ATCS) providing advanced traffic signal operation including real-time grouping of coordinated intersections. Signal timing transition occurs when such signal timings as cycles and offsets are changed at coordinated intersections. Setting a proper length of signal timing transition has become in interest for real-time coordination. This paper presents a study verifying the effects of different lengths of signal timing transition. Four different transition lengths were tested and compared in simulation environment. They include a single, double, treble, quadruple cycle length transitions. The number of cycles represents the ones used (interpolation) for transition. Signal timings were controlled to be adjusted uniformly and discretely during a transition period. Transition times considered in the test are within ranges of ${\pm}20$ percents of cycle lengths. It was found from the study that a single cycle transition performs better than or at least equal to the ones from the other with fifteen different operational conditions, which are developed based on a hypothetical arterial. It was suggested that a single cycle length transition be beneficial when amount of transition is within ${\pm}20$ percents of cycle lengths.

Investigation of a Left-Turn Phase Time Estimation Method for TRC Operation (실시간 신호시스템의 좌회전 신호시간 추정방법에 관한 연구 (검지기 장애발생시를 중심으로))

  • An, Hye-Jin;Nam, Baek;Lee, Sang-Su
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.33-42
    • /
    • 2007
  • The current left-turn split model adopted in COSMOS has an inherent limitation when a loop detector in the left-turn lanes was disconnected for a period of time. In this instance, the current model always allocated minimum green time to the left-turn phase, thus optimal split and efficient signal operation for the intersection was not guaranteed. In this paper, four mathmatical models using detector information of the intersection and four empirical models using historical profiles were developed and investigated for different traffic conditions to improve the operational efficiency of the intersection. From the model evaluation test, the empirical model using a four-week historical profile produced the least error among the eight models investigated. NETSIM simulation test results also showed that the proposed model could give significantly reduced delay time as compared to the current model. From these results, the operational efficency of the signalized intersections under the real-time control can be greatly improved by using the model proposed in case of the left-turn detector failure.