• Title/Summary/Keyword: 교통정보 신뢰도

Search Result 304, Processing Time 0.028 seconds

Development of Bus Arrival Time Estimation Model by Unit of Route Group (노선그룹단위별 버스도착시간 추정모형 연구)

  • No, Chang-Gyun;Kim, Won-Gil;Son, Bong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.1
    • /
    • pp.135-142
    • /
    • 2010
  • The convenient techniques for predicting the bus arrival time have used the data obtained from the buses belong to the same company only. Consequently, the conventional techniques have often failed to predict the bus arrival time at the downstream bus stops due to the lack of the data during congestion time period. The primary objective of this study is to overcome the weakness of the conventional techniques. The estimation model developed based on the data obtained from Bus Information System(BIS) and Bus management System(BMS). The proposed model predicts the bus arrival time at bus stops by using the data of all buses travelling same roadway section during the same time period. In the tests, the proposed model had a good accuracy of predicting the bus arrival time at the bus stops in terms of statistical measurements (e.g., root mean square error). Overall, the empirical results were very encouraging: the model maintains a prediction job during the morning and evening peak periods and delivers excellent results for the severely congested roadways that are of the most practical interest.

A Study for Optimized Detecter Location Considering the Traffic Characteristics in National Highway (일반국도 통행특성을 고려한 지점검지기의 적정설치지점 선정에 관한 연구)

  • Byeon, Sang-Cheol;Lee, Seung-Jae
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.2 s.88
    • /
    • pp.19-30
    • /
    • 2006
  • This study deals with the optimized detector location considering the traffic characteristics in National Highway. Although there ave many construction works for ITS in National Highway, there is not specific criteria for detector location which can effect the accuracy of traffic information. This study. therefore. aims to Provide the optimized detector location criteria which can represent the traffic characteristics of National Highway. It collects traffic factors of study area by GPS Probe-car and defector, and Presents the optimized detector location by the correlation analysis between spot-speed and link-travel-time. The main results of this study are as followings ; First, the correlation between the spot-speed and link-travel-time Presents the opposite bell shape of the graph (U-type owe) which is increased it?on the upstream then, declined through some unspecified Point of the link. Second, the optimized detector location usually distributes around midstream of link, even though it does not have a consistency. Third, therefore, the optimized detector location generally should be located between $55{\sim}60%$ of total link length. Forth. high level of vertical slope is one of the most important factors of detector location, so it should be excluded for determination of optimized detector location. Finally, expecting that the results of this study would improve the accuracy of travel time estimation and forecasting.

Implementation of abnormal behavior detection system based packet analysis for industrial control system security (산업 제어 시스템 보안을 위한 패킷 분석 기반 비정상행위 탐지 시스템 구현)

  • Kim, Hyun-Seok;Park, Dong-Gue
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.47-56
    • /
    • 2018
  • National-scale industrial control systems for gas, electric power, water processing, nuclear power, and traffic control systems increasingly use open networks and open standards protocols based on advanced information and communications technologies. The frequency of cyberattacks increases steadily because of the use of open networks and open standards protocols, but follow-up actions are limited. Therefore, the application of security solutions to an industrial control system is very important. However, it is not possible to apply security solutions to a real system because of the characteristics of industrial control systems. And a security system that can detect attacks without affecting the existing system is imperative. Therefore, in this paper, we propose an intrusion detection system based on packet analysis that can detect anomalous behaviors without affecting the industrial control system, and we verify the effectiveness of the proposed intrusion detection system by applying it in a test bed simulating a real environment.

A Study on the Methodology modelling of Risk Assessment in Road Tunnels (도로터널시설 위험평가 모델링을 위한 방법론 연구)

  • Cho, Inuh;Han, Dae-yong;Kim, Seung-jin;Yoon, Jong-ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.59-73
    • /
    • 2016
  • The demand for subsurface transport is increasing. The users and the operators of road tunnels are exposed to risks with different causes. One main cause, however, is the traffic situation in the event of accidents. The importance of a Quantified Risk Assessment is increasing to quantify the safety of road tunnels and to balance the requirements (capacity, reliability, availability, maintainability and safety) of various stakeholders. Although there are classical methods for risk assessments, such as ETA and FTA. These methods are used for relatively simple cases because it could not relevantly reflect the diversity and relationship of the parameters. Therefore, a quantitative risk assessment based on Bayesian Probabilistic Networks considering interdependence between the parameters of a complex underground system as a double deck tunnel is provided.

A Study on the Analysis of Risk Factors and the Reoccurrence Prevention in Construction Site Accidents (건설현장사고의 공종별 위험요소 분석 및 재발방지대책에 관한 연구)

  • Heo, Jun Kue;Choi, Mi Reu;Oh, Kwang Chin;Shin, Ju Yeoul
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.1 no.1
    • /
    • pp.16-21
    • /
    • 2018
  • The purpose of this study was to utilize 90 construction site accidents accumulated from 15 years ago by the Office of the High Level Investigation Committee of the Korea Infrastructure Safety Corporation under consignment from the Ministry of Land, Infrastructure and Transport. The construction site accident population used in this study is difficult to represent the entire construction site accident, but is considered to have statistical value as analysis data for a given size of construction site accident. The analysis is believed to be available on site as a basic data for securing construction safety and is expected to be used as a data for establishing future direction of construction safety policy.

Time Series Modeling Pipeline for Urban Behavioral Demand Prediction under Uncertainty (COVID-19 사례를 통한 도시 내 비정상적 수요 예측을 위한 시계열 모형 파이프라인 개발 연구)

  • Minsoo Jin;Dongwoo Lee;Youngrok Kim;Hyunsoo Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.80-92
    • /
    • 2023
  • As cities are becoming densely populated, previously unexpected events such as crimes, accidents, and infectious diseases are bound to affect user demands. With a time-series prediction of demand using information with uncertainty, it is impossible to derive reliable results. In particular, the COVID-19 outbreak in early 2020 caused changes in abnormal travel patterns and made it difficult to predict demand for time series. A methodology that accurately predicts demand by detecting and reflecting these changes is, therefore, required. The current study suggests a time series modeling pipeline that automatically detects and predicts abnormal events caused by COVID-19. We expect its wide application in various situations where there is a change in demand due to irregular and abnormal events.

The Development of the Anchor Dragging Risk Assessment Program (선박 주묘 위험성 판별 프로그램 개발에 관한 연구)

  • Kim, Joo-Sung;Park, Jun-Mo;Jung, Chang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.646-653
    • /
    • 2018
  • Marine accidents caused by dragging anchors occur constantly due to enlargement of ships' size and unusual weather conditions. Nevertheless, vessel operators rely on their experience because the calculations of actual holding power and external forces are complex and inconvenient. The purpose of this study was to propose a program for the anchor dragging risk assessment in order to provide crew and VTSO with the information to determine easily the danger of dragging and take appropriate action. The input data in this program were composed of the ship's basic particulars, anchoring condition, and external environment etc. on calculating for the wind pressure, frictional force, drift force, and holding power. Three dragging anchor accidents were applied to the program's data input at the time of the day, then the result was assessed by 'warning', which was verified with a high confidence. As a result, the risk of dragging anchors can be predicted in advance through this program. In further studies, it is necessary to simplify the input data and improve user convenience through automatic input from various equipment.

A Study on the Possibility of Blockchain Technology Adoption in the Logistics Industry (물류산업 내 블록체인 기술 도입 가능성 연구)

  • Kye, Dong Min;Hur, Sung Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.116-131
    • /
    • 2022
  • With the recent progress of the 4th industrial revolution, the logistics industry is also making efforts to introduce smart logistics, and various attempts are being made to spread logistics informatization, which is the core of smart logistics. Among these, blockchain technology is considered as a technology that will contribute to the spread of logistics informatization and is being applied to various fields. Accordingly, in this study, to discuss the applicability of blockchain technology to the logistics industry, the characteristics of blockchain technology were defined, related cases were reviewed, and a survey was conducted on the possibility of application in the industry. Blockchain technology can be defined as having the characteristics of economic feasibility, speed, transparency in terms of work efficiency, and scalability, decentralization (decentralization), reliability (security) in terms of added value creation. It was confirmed that many are being introduced in the fields of distribution, finance, personal information, and public services. As a result of the survey on the logistics industry, it was confirmed that the level of informatization of the logistics industry had entered the stage of generating profits by using information, but the industry was passive in sharing and utilizing information due to concerns about information leakage. Nevertheless, the awareness and expectation of the need for informatization is high, and it is expected that the informatization of the logistics industry and realizing smart logistics based on it will advance one step further with the introduction of blockchain technology in the future.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

Estimation of Support Working Expenses for Dam Area using GIS Spatial Analysis (GIS 공간분석을 이용한 댐 주변지역 지원사업비 산정)

  • Hwang, Eui-Ho;Lee, Geun-Sang;Chae, Hyuo-Suck;Koh, Deuk-Koo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.24-32
    • /
    • 2005
  • Budget distribution system suporting dam area was changed largely in 2005, and thus, population survey and area calculation for dam and needed to be performed based upon the new criteria. According to the former regulations, dam area was confined to inside of 5km from the H.W.L-line. However, new regulations divide it into two categories : inside and outside of catchment area within 2km from the H. W. L-line and those belong to 2~5km from the same line. In this study, topography, DEM, TIN and Hydrological Unit Map were build for the analysis of the Namgang Dam area. It shows that analysis of dam area using GIS methods produces a good results to be used for rational distribution of budget.

  • PDF