• 제목/요약/키워드: 교통이력데이터

검색결과 47건 처리시간 0.031초

사고등급별 고속도로 교통사고 처리시간 예측모형 개발 (Development of Freeway Traffic Incident Clearance Time Prediction Model by Accident Level)

  • 이숭봉;한동희;이영인
    • 대한교통학회지
    • /
    • 제33권5호
    • /
    • pp.497-507
    • /
    • 2015
  • 고속도로의 비반복 혼잡은 주로 돌발상황에 의해 발생된다. 돌발상황의 주요 원인은 교통사고로 알려져 있다. 따라서 교통사고 시 사고처리시간을 정확하게 예측하는 것은 돌발상황 관리에서 매우 중요하다. 본 연구에서는 전국고속도로의 2008-2014년 총 7년치(60,473건)의 사고 자료를 이용하였다. 사고처리시간 예측모형은 과거의 교통사고 이력자료를 바탕으로 비모수모형인 KNN (K-Nearest Neighbor) 알고리즘을 활용하였다. 사고자료 현황 분석결과 사고등급별로 사고처리시간에 미치는 영향이 매우 큰 것으로 분석되었다. 따라서 사고처리시간은 사고등급별로 분류하여 모형을 구축하였다. 그리고 현재 발생한 사고의 교통상황과 도로 기하구조를 반영하기 위하여 교통량, 차로수, 시간대를 구분하여 데이터를 추출하였다. 추출된 데이터 중 현재 교통사고와 유사한 사고를 검색하기 위하여 사고처리시간에 영향을 미치는 요인들을 분석하였다. 마지막으로, 상태간 거리 산정을 위해서 세부항목별 가중치를 산정하였다. 가중치산정은 정규분포 표준화방법을 적용하였고, 이를 통해 사고처리시간을 예측하였다. 본 연구에서 개발된 모형의 예측결과는 기존의 연구들의 결과에 비해 낮은 예측오차(MAPE)를 보여 모형의 우수성을 입증할 수 있다고 판단된다. 본 연구를 통해 고속도로의 돌발상황 발생 시 효율적인 고속도로의 운영관리에 기여할 수 있고, 기존의 모형들이 갖고 있던 한계를 개선 및 보완할 수 있을 것으로 판단된다.

차량재하시험에 의한 구조물 동특성 평가에 웨이블렛변환의 이용 (Application of Wavelet Transform in Estimating Structural Dynamic Parameters by Vehicle Loading Test)

  • 박형기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권2호
    • /
    • pp.129-136
    • /
    • 2005
  • 교량의 안전진단 과정에서 안전성 평가를 위해 전면교통통제 하에 차량재하시험이 일반적으로 실시된다. 교통통제의 단점을 개선시킨 최근에 제안된 의사정적재하시험에서는 계측된 시간이력 데이터 중 자유진동 부분을 퓨리에변환시켜 고유진동수를 구한다. 이렇게 구해진 고유진동수에는 분석기법에 따른 오차가 포함되며, 자유진동 데이터의 획득에도 다소 애로사항이 따른다. 이 연구에서는 Morlet wavelet를 모웨이블렛으로 하는 웨이블렛변환을 의사정적재하시험으로 계측한 데이터에 적용하여 구한 고유진동수와 감쇠율이 신뢰성을 가지며, 이 분석기법이 의사정적재하시험에 의한 차량재하시험의 자료 분석에 적용 가능하고 타당성이 있음을 보인다.

DTG 빅데이터 기반의 링크 평균통행시간을 이용한 도심네트워크 혼잡분석 방안 연구 (A Study of Measuring Traffic Congestion for Urban Network using Average Link Travel Time based on DTG Big Data)

  • 한여희;김영찬
    • 한국ITS학회 논문지
    • /
    • 제16권5호
    • /
    • pp.72-84
    • /
    • 2017
  • 4차 산업혁명의 빅데이터 시대와 더불어 교통정보 수집원도 기존 지점검지 체계에서 구간검지체계로 바뀌었다. 위성측위시스템 기반의 DTG(Digital Tachograph) 자료를 대상으로, 원시자료와 가공단계에 따른 자료의 속성을 고찰하였다. 가공단계에 따라 생성되는 개별차량의 주행궤적, 개별차량의 링크통행시간, 링크 평균통행시간 정보의 특성을 분석하였다. 가공자료의 특징에 따라 교통관리분야에서 활용할 수 있는 방안을 고찰하고, 센터의 자료 관리현황과 현 시점에서 활용 가능한 이력자료를 선정하였다. 광범위성을 가지고 상시 수집 가능한 링크 평균통행시간의 이력자료를 이용하여 통행시간지표를 생성하는 방법을 제시하였다. 통행시간지표를 이용하여 도심 네트워크의 혼잡을 모니터링하는 방법에 대해 고찰하고, 단독 교차로의 운영 방법이 바뀔 경우 이에 대한 사전 사후 분석을 사례로 분석하였다. 동시에 DTG 자료의 온전한 활용이 어려운 현재의 상황을 한계점으로 제시하였다.

제주 택시 텔레매틱스 시스템에서의 교통정보 검색 방법 (A data retrieval method for traffic information on the Jeju taxi telematics system)

  • 이정훈;박경린
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2008년도 공동추계학술대회
    • /
    • pp.177-181
    • /
    • 2008
  • 본 논문은 제주 택시 텔레매틱스 시스템의 운영과정에서 축적되고 있는 각 택시들의 이동이력 데이터를 기반으로 관심구간의 통행속도에 관련된 필드들을 효율적으로 추출하는 기법을 설계하고 구현한다. 구현된 인터페이스는 도로네트워크 상에서 관심구간의 양끝점을 입력받아 $A^*$ 알고리즘을 수행하여 경로상에 포함된 각 링크를 결정한 후 해당 링크 아이디를 포함하는 질의문의 스켈리튼을 생성한다. 이 질의문을 수정하여 관심구간의 속도 레코드수, 속도 평균, 승객탑승시의 속도, 요일별 시간대별 평균 속도 등 다양한 정보를 체계적으로 검색할 수 있다. 제주시 연삼로 구간에 대한 시험적 검색 결과는 승객이 탑승한 경우 전체 경우 보다 $30{\sim}50%$ 정도의 보고수, $2{\sim}4$ kmh 빠른 통행 속도 등을 보이고 있으며 시간대별 통계는 요일별 통행속도 패턴의 변화를 정량화하고 있다.

  • PDF

대용량 과거 교통 이력데이터 관리를 위한 방법론 설계 (Design of methodology for management of a large volume of historical archived traffic data)

  • 우찬일;전세길
    • 디지털산업정보학회논문지
    • /
    • 제6권2호
    • /
    • pp.19-27
    • /
    • 2010
  • Historical archived traffic data management system enables a long term time-series analysis and provides data necessary to acquire the constantly changing traffic conditions and to evaluate and analyze various traffic related strategies and policies. Such features are provided by maintaining highly reliable traffic data through scientific and systematic management. Now, the management systems for massive traffic data have a several problems such as, the storing and management methods of a large volume of archive data. In this paper, we describe how to storing and management for the massive traffic data and, we propose methodology for logical and physical architecture, collecting and storing, database design and implementation, process design of massive traffic data.

교통약자를 위한 맞춤형 식당 추천시스템 구현 (Implementation of a Personalized Restaurant Recommendation System for The Mobility Handicapped)

  • 이진주;박소연;김서윤;이정은;김건욱
    • 디지털융복합연구
    • /
    • 제19권5호
    • /
    • pp.187-196
    • /
    • 2021
  • 교통약자는 우리 사회의 높은 비율을 차지하고 있는 대표적인 사회 취약계층이다. 최근 기술의 발달로 사회취약 계층을 위한 맞춤형 복지 기술이 연구되고 있으나, 일반인들과 비교하면 상대적으로 부족한 실정이다. 이에 본 연구에서는 교통약자를 위한 맞춤형 식당 추천시스템을 구현하고자 한다. 이를 위해 특별교통수단 승하차 이력(7,153건), 대구 푸드 식당 상세정보(955건)의 자료를 결합하여 하이브리드 추천시스템을 구현하였다. 구현된 추천시스템의 유효성 평가를 위해 예측 오차율, 추천 커버리지로 기존 추천시스템들과 성능 비교를 수행하여 유효성을 검증하였다. 분석 결과 기존 추천시스템보다 높은 성능으로 나타났으며, 교통약자를 위한 맞춤형 식당 추천시스템의 가능성을 확인하였다. 또한 일부 교통약자 유형에서 유사한 식당이 추천되는 상관성을 확인하였다. 본 연구결과는 교통약자들의 만족도 높은 식당 이용에 기여할 것으로 판단되며, 연구의 한계점 또한 제시하였다.

적응형 k-NN 기법을 이용한 UTIS 속도정보 결측값 보정처리에 관한 연구 (A study on the imputation solution for missing speed data on UTIS by using adaptive k-NN algorithm)

  • 김은정;배광수;안계형;기용걸;안용주
    • 한국ITS학회 논문지
    • /
    • 제13권3호
    • /
    • pp.66-77
    • /
    • 2014
  • UTIS(Urban Traffic Information System)는 프로브차량을 활용하여 도시지역의 구간통행시간 정보를 직접 수집하는 방식으로 타 검지체계에 비해 상대적으로 정확한 링크 속도정보를 산출할 수 있다. 하지만, 현재 UTIS에서는 프로브차량(Probe Vehicle) 및 노변기지국(RSE)의 부족, 시스템 오류 등 다양한 요인에 의해 링크 속도정보의 수집이 누락되는 결측 구간이 발생되고 있다. 본 연구에서는 보다 정확한 여행시간 정보를 제공하기 위한 방안으로 k-NN 알고리즘을 기반으로 결측속도 정보를 효율적으로 보정할 수 있는 새로운 보정모형을 제안하였다. 제안 모형은 각 후보개체(이력 시계열 데이터)의 분포 특성에 따라 최근접이웃 개수를 탄력적으로 조정하는 적응형 k-NN 모형이다. 모형 평가 결과, 제안 모형이 결측정보를 효과적으로 보정 처리할 수 있는 동시에 ARIMA 등 타 모형에 비해 보정 오차를 크게 감소시킬 수 있는 것으로 분석되었다. 본 연구에서 제안된 결측 보정 모형은 UTIS 중앙교통정보센터에 직접 적용하여 교통정보 서비스 품질을 향상시키데 활용될 계획이다.

순환인공신경망(RNN)을 이용한 대도시 도심부 교통혼잡 예측 (Traffic Congestion Estimation by Adopting Recurrent Neural Network)

  • 정희진;윤진수;배상훈
    • 한국ITS학회 논문지
    • /
    • 제16권6호
    • /
    • pp.67-78
    • /
    • 2017
  • 교통혼잡비용은 매해 증가하며, 교통혼잡비용의 63.8%에 해당되는 도심부 교통혼잡에 대한 대책 마련이 시급한 상태이다. 최근 빅데이터, 인공지능 등 4차 산업혁명을 선도하는 기술들의 발전으로 교통부문의 정보화에도 많은 변화가 초래되고 있다. 이러한 신개념 기술을 활용하여 소통상황 예측정보를 제공함으로써 교통혼잡비용을 저감할 수 있을 것으로 기대된다. 이에 본 연구에서는 순환 인공 신경망(RNN)을 활용하여 반복 및 비반복 정체 예측 모형을 개발하고자 하였다. 제안 모형은 실시간 소통정보, 이력정보, 유고상황정보 등을 활용하여 현재를 기점으로 15분 간격의 1시간 이후 소통 상황을 예측하는 모형이다. 33개 링크로 구성된 서울시 논현로에 대해 2개의 은닉층으로 구성된 RNN 모형을 구축하였다. 총 30개 모형을 계량활용변화역전파 알고리즘으로 학습하여, 이 중 평균오차제곱이 0.0834인 모형을 최적 모형으로 선정하였다. 모형 검증 결과 25개 링크에 대해 유의성 높은 예측을 하였다. 모형의 예측력을 열지도를 통해 검토한 결과 반복 정체뿐 아니라 비반복 정체까지 예측할 수 있는 것을 확인할 수 있었다. 따라서 실제 도로 상에서의 교통혼잡 예측을 위한 모형으로 활용할 수 있을 것이라 기대된다.

공유자전거 따릉이 재배치를 위한 실시간 수요예측 모델 연구 (Demand Forecasting Model for Bike Relocation of Sharing Stations)

  • 김유신
    • 인터넷정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.107-120
    • /
    • 2023
  • 서울 도심 내 교통량 감축과 탄소배출을 줄이기 위해 2015년 도입된 공공자전거 따릉이는 이용자가 해마다 배 이상 증가하여 2023년 기준 2700여 대여소에서 4만 3천여 대가 운영 중이며 누적 가입자 4백만 명을 넘어서는 서울시민이 뽑은 가장 성공적인 공공 정책으로 자리매김하였다. 그러나 따릉이 이용이 급속도로 증가됨에 따라 자전거 수요·공급 불일치로 인한 자전거 부족 민원도 급증하여 효율적인 자전거 재배치가 강하게 요구되었다. 이에 본 연구는 공유자전거의 대여·반납 이력 데이터, 기상데이터, 공휴일 정보, 따릉이 대여소 정보 등을 기반으로 따릉이 이용 패턴과 특성을 분석하고, 기계학습 알고리즘을 활용해 대여소별 따릉이 대여·반납 예측 모델을 개발하였다. 이를 이용하여 대여소별 안전재고를 확보할 수 있는 따릉이 재배치 수량을 도출하고 이를 서울시설공단 따릉이 관리App에 시범서비스 하였다. 따릉이의 수요를 실시간으로 예측하고 현재 거치 중인 재고량과 비교하여 적절한 수량의 자전거를 재배치한다면 자전거 부족으로 인한 시민들의 불편 해소에 기여할 수 있을 것으로 기대된다.

적설 관측 여부에 따른 대설피해 예측함수 적용성 검토 (Evaluation of Snow Damage Prediction Funtion Depending on Historical Snow Data.)

  • 이형주;정건희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.403-403
    • /
    • 2018
  • 최근 세계적인 기상이변으로 국지적인 대설과 한파가 발생하고 있다. 특히 최근 2018년 1월 8일 미국에 100년만의 한파로 인해 체감온도가 영하 69도까지 떨어지고, 우리나라에서도 2월 8일 제주도 폭설과 한파로 인해 교통이 마비되는 등의 피해가 발생한 것으로 알려져 겨울철 자연재해에 대한 관심이 대두되고 있다. 이로 인해 대설피해 예측 및 저감에 대한 연구가 다수 진행되고 있으나, 적설 관측소는 전국 229개 시 군 구 중 약 100여개에 불과하여 미관측 지역에 대한 데이터 수집에 어려움을 겪고 있다. 따라서 본 연구에서는 적설 관측 지점별 대설피해 예측함수를 개발하고 적용성을 검토하고자 하였다. 이를 위해 본 연구에서는 4단계 구성과정을 통해 연구를 수행하였다. 첫째, 전국 대설피해 관측지점 및 미관측지점을 구분하고, 관측 이력 20년 이상 지역을 표본으로 채택하였다. 둘째, 재해통계 활용 및 문헌조사를 통해 대설피해 유발인자 조사 및 분석하였다. 셋째, 비닐하우스의 최소 설계기준 적설심의 절반인 10 cm 미만에서 발생한 피해는 기타 외적인 요인이 작용하였을 것으로 보고 제외하였다. 넷째, 다중회귀분석을 통해 대설피해 예측 함수를 개발하고 적용성 검토를 실시하였다. 검토 결과 수정된 결정계수가 약 0.8 이상 나타내었으며, 이는 대설피해의 정확하고 예측을 위해 적설심 관측이 매우 중요한 것을 나타내며, 적설관측의 공간적인 정확도가 향상된다면 대략적인 피해규모 예측이 가능한 것으로 판단되었다.

  • PDF