• Title/Summary/Keyword: 교통예측

Search Result 1,329, Processing Time 0.029 seconds

Validating DEVS based Traffic Simulation Model for Freeways (DEVS 기반의 연속 교통류 시뮬레이션 시스템 검증 ($I^3D^2$ 교통류 시뮬레이션 시스템을 중심으로))

  • 윤동영;김원규;송병흠;지승도
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.11a
    • /
    • pp.125-130
    • /
    • 2002
  • 본 연구는 DEVS를 기반으로 개발된 교통류 시뮬레이션 시스템인 $\ulcorner$I$^3$D$^2$ 교통류 시뮬레이션 시스템$\lrcorner$(이하 I$^3$D$^2$)의 검증을 그 목적으로 한다. I$^3$D$^2$는 본 연구진이 DEVS를 기반으로 개발한 범용 시뮬레이션 도구로써, 이미 서울시 강남 신호교차로와 내부순환로를 대상으로 하여 개발된 내용을 발표한 바 있다. I$^3$D$^2$는 헌재 단속류에서의 최적신호 생성 및 대기행렬 예측 문제, 그리고 연속류 시설의 용량 산정 문제등을 시뮬레이션 할 수 있다. 하지만 아직 문헌자료나 현장 데이터를 토대로 한 충분한 검증이 수행되지 못한 문제가 있다. 따라서 본 연구에서는 문헌자료를 토대로, I$^3$D$^2$를 검증한다. 이를 위하여 고속도로 또는 도시고속도로와 같은 연속 교통류의 대표적인 효과척도인 $\ulcorner$교통량 - 밀도 - 평균주행속도 (시간)$\lrcorner$ 간의 상관관계를 이용하여 미국 HCM과 우리나라의 도로용량편람에 정의되어 있는 기준을 토대로 I$^3$D$^2$ 검증을 수행하였다. 모델링은 서울시 올림픽대로의 양화대교 - 성산대교 - 가양대교 구간을 대상으로 했으며, 검증은 교통량에 따라 크게 3가지 교통류 상태(random, intermediate, constant)를 기준으로 시뮬레이션이 각각의 교통상태에서 예측한 평균주행시간의 정확도를 측정하면서 수행하였다. 검증 결과 random 상태에서는 문헌자료에 부합되는 예측결과를 보여주었으나, intermediate와 constant 상태에서는 문헌보다 다소 낮은 속도를 보여주었다 이러한 속도차는 추후 현장 데이터를 수집하여 보다 실질적인 검증을 통하여 조정되어야 할 것으로 판단된다.

  • PDF

A Study for Development of Expressway Traffic Accident Prediction Model Using Deep Learning (딥 러닝을 이용한 고속도로 교통사고 건수 예측모형 개발에 관한 연구)

  • Rye, Jong-Deug;Park, Sangmin;Park, Sungho;Kwon, Cheolwoo;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.14-25
    • /
    • 2018
  • In recent years, it has become technically easier to explain factors related with traffic accidents in the Big Data era. Therefore, it is necessary to apply the latest analysis techniques to analyze the traffic accident data and to seek for new findings. The purpose of this study is to compare the predictive performance of the negative binomial regression model and the deep learning method developed in this study to predict the frequency of traffic accidents in expressways. As a result, the MOEs of the deep learning model are somewhat superior to those of the negative binomial regression model in terms of prediction performance. However, using a deep learning model could increase the predictive reliability. However, it is easy to add other independent variables when using deep learning, and it can be expected to increase the predictive reliability even if the model structure is changed.

Forecasting of Real Time Traffic Situation using Neural Network and Sensor Database Management System (신경망과데이터베이스 관리시스템을 이용한 실시간 교통상황 예보)

  • Jin, Hyun-Soo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.248-250
    • /
    • 2008
  • This paper proposes a prediction method to prevent traffic accident and reduce to vehicle waiting time using neural network. Computer simulation results proved reducing average vehicle waiting time which proposed coordinating green time better than electro-sensitive traffic light system dose not consider coordinating green time. Moreover, we present neural network approach for traffic accident prediction with unnormalized (actual or original collected) data. This approach is not consider the maximum value of data and possible use the network without normalizing but the predictive accuracy is better. Also, the unnormalized method shows better predictive accuracy than the normalized method given by maximum value. Therefore, we can make the best use of this model in software reliability prediction using unnormalized data. Computer simulation results proved reducing traffic accident waiting time which proposed neural network better than conventional system dosen't consider neural network.

  • PDF

Hierarchical time series forecasting with an application to traffic accident counts (계층적 시계열 분석을 이용한 지역별 교통사고 발생건수 예측)

  • Lee, Jooeun;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.181-193
    • /
    • 2017
  • The paper introduces bottom-up and optimal combination methods that can analyze and forecast hierarchical time series. These methods allow forecasts at lower levels to be summed consistently to upper levels without any ad-hoc adjustment. They can also potentially improve forecast performance in comparison to independent forecasts. We forecast regional traffic accident counts as time series data in order to identify efficiency gains from hierarchical forecasting. We observe that bottom-up or optimal combination methods are superior to independent methods in terms of forecast accuracy.

A Theoretical Review on the Behavioral Analysis of Travel Mode Choice in the terms of Accessibility (접근성을 고려한 교통수단선택의 행태 분석에 대한 이론적 고찰)

  • 오은열
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10a
    • /
    • pp.93-101
    • /
    • 1998
  • 오늘날 사회가 더욱더 복잡해지고 도시규모가 확대됨으로서 사람들의 의식과 행태로 사회, 경제적 여건의 변화에 따라 다양하게 변모하고 있다. 이에 따라 교통계획의 대상이 다양화되어 지역적인 시각에서 국부적이고 단기적인 교통정책에 관심이 높아지고 있다. 이에 따라 본 연구에서는 토지이용지표의 하나인 접근성을 고려하여 이에 대한 통행거리에 따른 통행자의 교통수단선택이 어떻게 나타나고 분석되는 가를 도출, 장래 교통수요를 예측하여 교통계획을 수립하는데 있어서 교통수단에 대한 공급결정 및 교통시설에 대한 설치를 하는데 이들 수단이나 시설의 적정성 여부를 판단하는 지표가 되는 것이다. 이에 대한 근거로는 전통적인 4단계 수요예측방법을 사용하여 왔으나, 이러한 방법을 사용하는데에는 한계가 도출되어 최근에 사용되고 있는 개별행태모형 중에서 로짓모형을 이용한 방법을 선택하고 적용 가능한 가를 문헌적으로 접근하여 기본이론을 파악하였다.

  • PDF

Prediction of Divided Traffic Demands Based on Knowledge Discovery at Expressway Toll Plaza (지식발견 기반의 고속도로 영업소 분할 교통수요 예측)

  • Ahn, Byeong-Tak;Yoon, Byoung-Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.521-528
    • /
    • 2016
  • The tollbooths of a main motorway toll plaza are usually operated proactively responding to the variations of traffic demands of two-type vehicles, i.e. cars and the other (heavy) vehicles, respectively. In this vein, it is one of key elements to forecast accurate traffic volumes for the two vehicle types in advanced tollgate operation. Unfortunately, it is not easy for existing univariate short-term prediction techniques to simultaneously generate the two-vehicle-type traffic demands in literature. These practical and academic backgrounds make it one of attractive research topics in Intelligent Transportation System (ITS) forecasting area to forecast the future traffic volumes of the two-type vehicles at an acceptable level of accuracy. In order to address the shortcomings of univariate short-term prediction techniques, a Multiple In-and-Out (MIO) forecasting model to simultaneously generate the two-type traffic volumes is introduced in this article. The MIO model based on a non-parametric approach is devised under the on-line access conditions of large-scale historical data. In a feasible test with actual data, the proposed model outperformed Kalman filtering, one of a widely-used univariate models, in terms of prediction accuracy in spite of multivariate prediction scheme.

A Study on Inner Zone Trip Estimation Method in Gravity Model (중력모형에서 존내 분포통행 예측방법에 관한 연구)

  • Ryu, Yeong Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.763-769
    • /
    • 2006
  • Gravity Model estimates target year's distributed trips using three variables like as origin zone's trip production, destination zone's trip attraction and traffic impedance between origin zone centroid and destination zone centroid. Estimating inner zone trip by gravity model is impossible because traffic impedance of inner zone has "0" value. So till today, for estimating inner zone trips, other methods like growth factor model are used. This study proposed inner zone trip estimation method that calculates inner zone's traffic impedance using established gravity model and estimates inner zone trips by putting calculated traffic impedance into the gravity model. 1988 year's surveyed O-D as basic year's O-D, proposed method's and existing methods(growth factor method and regression model)'s estimated results of 1992 year's and 2004 year's were compared with each year's real O-D by $x^2$, RMSE, Correlation coefficient. And resulted that the proposed method is superior than other existing methods.

Development of a Mid-/Long-term Prediction Algorithm for Traffic Speed Under Foggy Weather Conditions (안개시 도시고속도로 통행속도 중장기 예측 알고리즘 개발)

  • JEONG, Eunbi;OH, Cheol;KIM, Youngho
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.3
    • /
    • pp.256-267
    • /
    • 2015
  • The intelligent transportation systems allow us to have valuable opportunities for collecting wide-area coverage traffic data. The significant efforts have been made in many countries to provide the reliable traffic conditions information such as travel time. This study analyzes the impacts of the fog weather conditions on the traffic stream. Also, a strategy for predicting the long-term traffic speeds is developed under foggy weather conditions. The results show that the average of speed reductions are 2.92kph and 5.36kph under the slight and heavy fog respectively. The best prediction performance is achieved when the previous 45 pattern cases data is used, and the 14.11% of mean absolute percentage error(MAPE) is obtained. The outcomes of this study support the development of more reliable traffic information for providing advanced traffic information service.

Multiple Period Forecasting of Motorway Traffic Volumes by Using Big Historical Data (대용량 이력자료를 활용한 다중시간대 고속도로 교통량 예측)

  • Chang, Hyun-ho;Yoon, Byoung-jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.73-80
    • /
    • 2018
  • In motorway traffic flow control, the conventional way based on real-time response has been changed into advanced way based on proactive response. Future traffic conditions over multiple time intervals are crucial input data for advanced motorway traffic flow control. It is necessary to overcome the uncertainty of the future state in order for forecasting multiple-period traffic volumes, as the number of uncertainty concurrently increase when the forecasting horizon expands. In this vein, multi-interval forecasting of traffic volumes requires a viable approach to conquer future uncertainties successfully. In this paper, a forecasting model is proposed which effectively addresses the uncertainties of future state based on the behaviors of temporal evolution of traffic volume states that intrinsically exits in the big past data. The model selects the past states from the big past data based on the state evolution of current traffic volumes, and then the selected past states are employed for estimating future states. The model was also designed to be suitable for data management systems in practice. Test results demonstrated that the model can effectively overcome the uncertainties over multiple time periods and can generate very reliable predictions in term of prediction accuracy. Hence, it is indicated that the model can be mounted and utilized on advanced data management systems.