• Title/Summary/Keyword: 교통사고 예측모형

Search Result 163, Processing Time 0.023 seconds

Development of Traffic Accident Rate Forecasting Models for Trumpet IC Exit Ramp of Freeway using Variables Transformation Method (변수변환 기법을 이용한 고속도로 트럼펫IC 유출연결로 교통사고율 예측모형 개발)

  • Yoon, Byoung-Jo
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.139-150
    • /
    • 2008
  • In this study, It is focused on development of the forecasting model about trumpet InterChange(IC) ramp accident because of the frequency of accident in ramp more than highway basic section and trend the increasing accident in ramp. The independent variables was selected through statistical analysis(correlation analysis, multi-collinearity etc) by ramp types(direct, semi-direct and loop). The independent variables and accident rate is non-linear relationship. So it made new variables by transformation of the independent variables. The forecasting models according to exit-ramp type (direct, semi-direct and loop) are built with statistical multi-variable regression using all possible regression method. And the forecasts of the models showed high accuracy statistically. It is expected that the developed models could be employed to design trumpet IC ramp more cost-efficiently and safely and to analyze the causes of traffic accidents happened on the IC ramp.

  • PDF

A Study on the Application of Accident Severity Prediction Model (교통사고 심각도 예측 모형의 활용방안에 관한 연구 (서해안 고속도로를 중심으로))

  • Won, Min-Su;Lee, Gyeo-Ra;O, Cheol;Gang, Gyeong-U
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.167-173
    • /
    • 2009
  • It is important to study on the traffic accident severity reduction because traffic accident is an issue that is directly related to human life. Therefore, this research developed countermeasure to reduce traffic accident severity considering various factors that affect the accident severity. This research developed the Accident Severity Prediction Model using the collected accident data from Seohaean Expressway in 2004~2006. Through this model, we can find the influence factors and methodology to reduce accident severity. The results show that speed limit violation, vehicle defects, vehicle to vehicle accident, vehicle to person accident, traffic volume, curve radius CV(Coefficient of variation) and vertical slope CV were selected to compose the accident severity model. These are certain causes of the severe accident. The accidents by these certain causes present specific sections of Seohaean Expressway. The results indicate that we can prevent severe accidents by providing selected traffic information and facilities to drivers at specific sections of the Expressway.

A GIS-based Traffic Accident Analysis on Highways using Alignment Related Risk Indices (고속도로 선형조건과 GIS 기반 교통사고 위험도지수 분석 (호남.영동.중부고속도로를 중심으로))

  • 강승림;박창호
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.21-40
    • /
    • 2003
  • A traffic accident analysis method was developed and tested based on the highway alignment risk indices using geographic information systems(GIS). Impacts of the highway alignment on traffic accidents have been identified by examining accidents occurred on different alignment conditions and by investigating traffic accident risk indices(TARI). Evaluative criteria are suggested using geometric design elements as an independent variable. Traffic accident rates were forecasted more realistically and objectively by considering the interaction between highway alignment factors and the design consistency. And traffic accident risk indices and risk ratings were suggested based on model estimation results and accident data. Finally, forecasting traffic accident rates, evaluating the level of risk and then visualizing information graphically were combined into one system called risk assessment system by means of GIS. This risk assessment system is expected to play a major role in designing four-lane highways and developing remedies for highway sections susceptible to traffic accidents.

Predicting of the Severity of Car Traffic Accidents on a Highway Using Light Gradient Boosting Model (LightGBM 알고리즘을 활용한 고속도로 교통사고심각도 예측모델 구축)

  • Lee, Hyun-Mi;Jeon, Gyo-Seok;Jang, Jeong-Ah
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1123-1130
    • /
    • 2020
  • This study aims to classify the severity in car crashes using five classification learning models. The dataset used in this study contains 21,013 vehicle crashes, obtained from Korea Expressway Corporation, between the year of 2015-2017 and the LightGBM(Light Gradient Boosting Model) performed well with the highest accuracy. LightGBM, the number of involved vehicles, type of accident, incident location, incident lane type, types of accidents, types of vehicles involved in accidents were shown as priority factors. Based on the results of this model, the establishment of a management strategy for response of highway traffic accident should be presented through a consistent prediction process of accident severity level. This study identifies applicability of Machine Learning Models for Predicting of the Severity of Car Traffic Accidents on a Highway and suggests that various machine learning techniques based on big data that can be used in the future.

Development of Traffic Accident Prediction Models Considering Variations of the Future Volume in Urban Areas (신설 도시부 도로의 장래 교통량 변화를 반영한 교통사고 예측모형 개발)

  • Lee, Soo-Beom;Hong, Da-Hee
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.125-136
    • /
    • 2005
  • The current traffic accident reduction procedure in economic feasibility study does not consider the characteristics of road and V/C ratio. For solving this problem, this paper suggests methods to be able to evaluate safety of each road in construction and improvement through developing accident Prediction model in reflecting V/C ratio Per road types and traffic characters. In this paper as primary process, model is made by tke object of urban roads. Most of all, factor effecting on accident relying on road types is selected. At this point, selecting criteria chooses data obtained from road planning procedure, traffic volume, existence or non-existence of median barrier, and the number of crossing point, of connecting road. and of traffic signals. As a result of analyzing between each factor and accident. all appear to have relatives at a significant level of statistics. In this research, models are classified as 4-categorized classes according to roads and V/C ratio and each of models draws accident predicting model through Poisson regression along with verifying real situation data. The results of verifying models come out relatively satisfactory estimation against real traffic data. In this paper, traffic accident prediction is possible caused by road's physical characters by developing accident predicting model per road types resulted in V/C ratio and this result is inferred to be used on predicting accident cost when road construction and improvement are performed. Because data using this paper are limited in only province of Jeollabuk-Do, this paper has a limitation of revealing standards of all regions (nation).

Prediction of Severities of Rental Car Traffic Accidents using Naive Bayes Big Data Classifier (나이브 베이즈 빅데이터 분류기를 이용한 렌터카 교통사고 심각도 예측)

  • Jeong, Harim;Kim, Honghoi;Park, Sangmin;Han, Eum;Kim, Kyung Hyun;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.1-12
    • /
    • 2017
  • Traffic accidents are caused by a combination of human factors, vehicle factors, and environmental factors. In the case of traffic accidents where rental cars are involved, the possibility and the severity of traffic accidents are expected to be different from those of other traffic accidents due to the unfamiliar environment of the driver. In this study, we developed a model to forecast the severity of rental car accidents by using Naive Bayes classifier for Busan, Gangneung, and Jeju city. In addition, we compared the prediction accuracy performance of two models where one model uses the variables of which statistical significance were verified in a prior study and another model uses the entire available variables. As a result of the comparison, it is shown that the prediction accuracy is higher when using the variables with statistical significance.

Development of Severity Model for Rural Unsignalized Intersection Crashes (지방부 비신호 교차로 교통사고 심각도 예측모형 개발 - 수도권 주변 및 전라북도 지역의 3지 비신호 교차로를 중심으로 -)

  • Lee, Dong-Min;Kim, Eung-Cheol;Sung, Nak-Moon;Kim, Do-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.47-56
    • /
    • 2008
  • Generally, accident exposure at intersections is relatively higher than that at roadway segments due to more possibility of merging, diverging, turning, crossing, and weaving maneuver. Furthermore, the traffic accident rate at intersections has been rapidly increasing since 1990's. Since there is more opportunity of conflict at unsignalized intersection, frequency and severity of traffic accident are more severe than signalized intersections. The purpose of the study is to analyze factors causing vehicle crashes and provide intersection design guidelines to improve intersection safety. For this study, vehicle to vehicle crash data of 116 rural 3 legs unsignalized were collected and field surveys were conducted for traffic and geometric conditions. Ordered probit models were developed to analyze the severity of crashes. It was found that weather, obstacles in minor roadsides, presence of major exclusive right lane, presence of major road crosswalk, difference between posted speed of major road and minor road, land-use around intersections, shoulder width of major road, ADT of major road are significant factors for intersection safety.

  • PDF

Traffic Accident Prediction Model by Freeway Geometric Types (고속도로 선형조건별 교통사고 위험도 평가모형 개발 (호남고속도로를 중심으로))

  • 강정규;이성관
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.163-175
    • /
    • 2002
  • Fatalities from traffic accidents constitute one of the major health issues as well as safety ones in Korea. It has been reported that traffic accident is affected by the combined effects of road. vehicle. and human factors. Over the past few decades, a number of studies have been conducted to find the impact of road geometric factors on traffic safety. The purpose of this study is to investigate the effect of road geometric factors on traffic safety on Korean expressways. Detailed geometric design data were available from Korea Highway Corporation. Five-year traffic accident data on Honam expressway were collected and analyzed. It was found that following geometric factors influence traffic safety on expressways : radius of curve, curve length, and length of straight section. Furthermore, the existence of I.C. turned out to have a significant impact on traffic safety level. Based on the data analysis several multiple regression forms that relate traffic accident frequencies and geometric factors on expressways are developed.

Freeway Crash Frequency Model Development Based on the Road Section Segmentation by Using Vehicle Speeds (차량 속도를 이용한 도로 구간분할에 따른 고속도로 사고빈도 모형 개발 연구)

  • Hwang, Gyeong-Seong;Choe, Jae-Seong;Kim, Sang-Yeop;Heo, Tae-Yeong;Jo, Won-Beom;Kim, Yong-Seok
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.2
    • /
    • pp.151-159
    • /
    • 2010
  • This paper presents a research result that was performed to develop a more accurate freeway crash prediction model than existing models. While the existing crash models only focus on developing crash relationships associated with highway geometric conditions found on a short section of a crash site, this research applies a different approach considering the upstream highway geometric conditions as well. Theoretically, crashes occur while motorists are in motion, and particularly at freeways vehicle speed at one specific point is very sensitive to upstream geometric conditions. Therefore, this is a reasonable approach. To form the analysis data base, this research gathers the geometric conditions of the West Seaside Freeway 269.3 km and six years crash data ranging 2003-2008 for these freeway sections. As a result, it is found that crashes fit well into Negative Binomial Distribution, and, based on the developed model, total number of crashes is inversely proportional to highway curve length and radius. Contrarily, crash occurrences are proportional to tangent length. This result is different from existing crash study results, and it seems to be resulted from this research assumption that a crash is influenced greatly by upstream geometric conditions. Also, this research provides the expected effects on crash occurrences of the length of downgrade sections, speed camera placements, and the on- and off- ramp presences. It is expected that this research result is useful for doing more reasonable highway designs and safety audit analysis, and applying the same research approach to national roads and other major roads in urban areas is recommended.