• Title/Summary/Keyword: 교통사고데이터

Search Result 365, Processing Time 0.028 seconds

Analysis of Traffic Accidents Injury Severity in Seoul using Decision Trees and Spatiotemporal Data Visualization (의사결정나무와 시공간 시각화를 통한 서울시 교통사고 심각도 요인 분석)

  • Kang, Youngok;Son, Serin;Cho, Nahye
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.233-254
    • /
    • 2017
  • The purpose of this study is to analyze the main factors influencing the severity of traffic accidents and to visualize spatiotemporal characteristics of traffic accidents in Seoul. To do this, we collected the traffic accident data that occurred in Seoul for four years from 2012 to 2015, and classified as slight, serious, and death traffic accidents according to the severity of traffic accidents. The analysis of spatiotemporal characteristics of traffic accidents was performed by kernel density analysis, hotspot analysis, space time cube analysis, and Emerging HotSpot Analysis. The factors affecting the severity of traffic accidents were analyzed using decision tree model. The results show that traffic accidents in Seoul are more frequent in suburbs than in central areas. Especially, traffic accidents concentrated in some commercial and entertainment areas in Seocho and Gangnam, and the traffic accidents were more and more intense over time. In the case of death traffic accidents, there were statistically significant hotspot areas in Yeongdeungpo-gu, Guro-gu, Jongno-gu, Jung-gu and Seongbuk. However, hotspots of death traffic accidents by time zone resulted in different patterns. In terms of traffic accident severity, the type of accident is the most important factor. The type of the road, the type of the vehicle, the time of the traffic accident, and the type of the violation of the regulations were ranked in order of importance. Regarding decision rules that cause serious traffic accidents, in case of van or truck, there is a high probability that a serious traffic accident will occur at a place where the width of the road is wide and the vehicle speed is high. In case of bicycle, car, motorcycle or the others there is a high probability that a serious traffic accident will occur under the same circumstances in the dawn time.

Development of Traffic Accidents Prediction Model With Fuzzy and Neural Network Theory (퍼지 및 신경망 이론을 이용한 교통사고예측모형 개발에 관한 연구)

  • Kim, Jang-Uk;Nam, Gung-Mun;Kim, Jeong-Hyeon;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.81-90
    • /
    • 2006
  • It is important to clarify the relationship between traffic accidents and various influencing factors in order to reduce the number of traffic accidents. This study developed a traffic accident frequency prediction model using by multi-linear regression and qualification theories which are commonly applied in the field of traffic safety to verify the influences of various factors into the traffic accident frequency The data were collected on the Korean National Highway 17 which shows the highest accident frequencies and fatality rates in Chonbuk province. In order to minimize the uncertainty of the data, the fuzzy theory and neural network theory were applied. The neural network theory can provide fair learning performance by modeling the human neural system mathematically. Tn conclusion, this study focused on the practicability of the fuzzy reasoning theory and the neural network theory for traffic safety analysis.

Development of Autonomous Vehicle Evaluation Scenarios Based on Car-to-Bicycle, Car-to-Pedestrian, and Car-to-Animal Traffic Accidents (차대 자전거, 차대 보행자, 차대 동물 교통사고 기반 자율주행차 평가 시나리오 개발)

  • Jihun Kang;Woori Ko;Yejin Kim;Jungeun Yoon;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.5
    • /
    • pp.322-337
    • /
    • 2024
  • The rapid advances in autonomous vehicle technology have highlighted the importance of ensuring safety across various traffic situations. This study developed scenarios for evaluating the safety of autonomous vehicles by constructing specific scenarios based on traffic accident data involving non-AV, bicycles, pedestrians, and animals, categorized by road type, segment type, and object type. The scenarios were developed using the text extracted from the accident descriptions recorded in police traffic accident data, and analyzed using the TF-IDF technique. These scenarios are expected to help improve the driving performance and safety of autonomous vehicles across diverse driving environments.

Proposal of a Black Ice Detection Method Using Vehicle Sensors to Reduce Traffic Accidents (교통사고 경감을 위한 차량 센서를 사용한 블랙아이스 탐지 방법 제안)

  • Kim, Hyung-gyun;Kim, Du-hyun;Baek, Seung-hyun;Jang, Min-seok;Lee, Yonsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.524-526
    • /
    • 2021
  • As the invention of automobiles and construction of roads for vehicles began, the occurrence of traffic accidents began to increase. Accordingly, efforts were made to prevent traffic accidents by changing the road construction method and using signal systems such as traffic lights, but until now, numerous human and property damages have occurred every year due to traffic accidents caused by freezing of the road due to bad weather. In this paper, we propose a method of transmitting ice detection data detected using vehicle sensor data to vehicle navigation to reduce traffic accidents caused by road freezing.

  • PDF

VTS 운영성과 분석을 통한 관제서비스 개선방안 고찰

  • 허학선;정재연;정병우;박성용
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.7-10
    • /
    • 2022
  • '21년 전국 20개 해상교통관제센터의 선박통항량, 교신량, 관제정보 제공 등 VTS 운영실적 분석 및 사고현황, 원인 분석을 통한 관제서비스 개선방안을 제시하고자 한다. 또한 해양사고 예방기능 강화를 위해 관제사 경험·직관에 의한 관제에서 빅데이터·인공지능(AI) 기반 첨단관제로의 전환, VTS 운영성과에 대한 공신력 확보 및 첨단관제 기술개발에 활용 등을 위한 VTS 통계관리체계 개산 방안에 대해서도 고찰해보았다.

  • PDF

Safety Impacts of Red Light Enforcement on Signalized Intersections (교차로 신호위반 단속카메라 설치가 차량사고에 미치는 영향)

  • Lee, Sang Hyuk;Lee, Yong Doo;Do, Myung Sik
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.6
    • /
    • pp.93-102
    • /
    • 2012
  • The frequency and severity of traffic accidents related to signalized intersections in urban areas have been more serious than those in both arterial segments and crosswalks. Especially, traffic accidents involved with injuries and fatalities have caused by traffic signal violations within intersections. Therefore, many countries including Korea have installed the red light enforcement camera (RLE) to reduce traffic accidents associated with the traffic signal violation. Meanwhile, many methodologies have been studied in terms of safety impacts estimation of red light enforcement, which, however, cannot be easy to conduct. In this study, safety impacts was estimated for intersections of Chicago downtown area using SPF models and EB approach. As a result, for all crash types and target traffic accident types such as "angle", "rear end", "sideswipe in the same and other directions", "turn", and "head on", fatal crashes were reduced by 26% and 38%. However, RLE may increase property-demage-only-crashes by 3.23% and 1.16%, respectively.

Classification and Prediction of Highway Accident Characteristics Using Vehicle Black Box Data (블랙박스 영상 기반 고속도로 사고유형 분류 및 사고 심각도 예측 평가)

  • Junhan Cho;Sungjun Lee;Seongmin Park;Juneyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.132-145
    • /
    • 2022
  • This study was based on the black box images of traffic accidents on highways, cluster analysis and prediction model comparisons were carried out. As analysis data, vehicle driving behavior and road surface conditions that can grasp road and traffic conditions just before the accident were used as explanatory variables. Considering that traffic accident data is affected by many factors, cluster analysis reflecting data heterogeneity is used. Each cluster classified by cluster analysis was divided based on the ratio of the severity level of the accident, and then an accident prediction evaluation was performed. As a result of applying the Logit model, the accident prediction model showed excellent predictive ability when classifying groups by cluster analysis and predicting them rather than analyzing the entire data. It is judged that it is more effective to predict accidents by reflecting the characteristics of accidents by group and the severity of accidents. In addition, it was found that a collision accident during stopping such as a secondary accident and a side collision accident during lane change act as important driving behavior variables.

Freeway Crash Frequency Model Development Based on the Road Section Segmentation by Using Vehicle Speeds (차량 속도를 이용한 도로 구간분할에 따른 고속도로 사고빈도 모형 개발 연구)

  • Hwang, Gyeong-Seong;Choe, Jae-Seong;Kim, Sang-Yeop;Heo, Tae-Yeong;Jo, Won-Beom;Kim, Yong-Seok
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.2
    • /
    • pp.151-159
    • /
    • 2010
  • This paper presents a research result that was performed to develop a more accurate freeway crash prediction model than existing models. While the existing crash models only focus on developing crash relationships associated with highway geometric conditions found on a short section of a crash site, this research applies a different approach considering the upstream highway geometric conditions as well. Theoretically, crashes occur while motorists are in motion, and particularly at freeways vehicle speed at one specific point is very sensitive to upstream geometric conditions. Therefore, this is a reasonable approach. To form the analysis data base, this research gathers the geometric conditions of the West Seaside Freeway 269.3 km and six years crash data ranging 2003-2008 for these freeway sections. As a result, it is found that crashes fit well into Negative Binomial Distribution, and, based on the developed model, total number of crashes is inversely proportional to highway curve length and radius. Contrarily, crash occurrences are proportional to tangent length. This result is different from existing crash study results, and it seems to be resulted from this research assumption that a crash is influenced greatly by upstream geometric conditions. Also, this research provides the expected effects on crash occurrences of the length of downgrade sections, speed camera placements, and the on- and off- ramp presences. It is expected that this research result is useful for doing more reasonable highway designs and safety audit analysis, and applying the same research approach to national roads and other major roads in urban areas is recommended.

Recognition of Dangerous Driving Using Automobile Black Boxes (차량용 블랙박스를 활용한 위험 운전 인지)

  • Han, In-Hwan;Yang, Gyeong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.149-160
    • /
    • 2007
  • Automobile black boxes store and provide accident and driving information. The accident and driving information can be utilized to build scientific traffic-event database and can be applied in various industries. The objective of this study is to develop a recognition system of dangerous driving through analyzing the driving characteristic patterns. In this paper, possible dangerous driving models are classified into four models on the basis of vehicle behaviors(acceleration, deceleration, rotation) and accident types from existing statistical data. Dangerous driving data have been acquired through vehicle tests using automobile black boxes. Characteristics of driving patterns have been analyzed in order to classify dangerous driving models. For the recognition of dangerous driving, this study selected critical value of each dangerous driving model and developed the recognition algorithm of dangerous driving. The study has been verified by the application of recognition algorithm of dangerous driving and vehicle tests using automobile black boxes. The presented recognition methods of dangerous driving can be used for on-line/off-line management of drivers and vehicles.

Analysis of disaster-accident information using artificial intelligence algorithm (인공지능 알고리즘을 활용한 재난사고정보 분석)

  • Ahn, Jaehwang;Choi, Youngje;Lee, Inhwa;Chae, Heechan;Yi, Jaeeung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.106-106
    • /
    • 2017
  • 우리나라는 현재 재난의 유형을 자연재난과 사회재난으로 구분하여 관리하고 있다. 하지만 최근 재난 사고 사례를 살펴보면 단일재난으로 인한 피해보다 자연재난이 발생한 이후 사회재난으로 재난이 전파되는 복합재난의 형태가 종종 나타나고 있다. 복합재난은 단일 재난에 의한 피해(인적, 물적) 보다 크게 나타나고 복합재난의 발생원인 및 전파과정을 분석하기 어려워 이에 대한 다각적인 분석과 동시에 재난상호간의 연관성을 도출하는 연구가 필요한 시점이다. 과거 재난사고정보를 분석하는 연구는 일반적인 통계기법을 활용한 분석에 머물러 있으며 수집된 재난사고사례가 많지 않아 분석에 신뢰성을 보장할 수 없었다. 이에 본 연구에서는 복잡하게 나타나는 재난 사고를 분석하기 위하여 최근 각광받고 있는 인공지능 분석기법을 연구에 고려하였다. 본 연구의 과정은, 첫째로 재난사고정보 분석에 인공지능을 활용한 사례를 조사하고 여타 연구분야에서 적용되고 있는 인공지능 분석기술을 재난사고정보 분석에 활용할 수 있는 방안을 모색하였다. 둘째로 수집가능 한 재난사고정보를 수집하고 인공지능 모형에 적용가능 한 형태로 변환하는 과정을 수행하였다. 셋째로 변환된 재난사고정보를 대표적인 인공지능 알고리즘을 활용하여 다양한 질문(목적)에 부합하는 재난사고정보 분석모형을 구축하고자 하였다. 마지막으로 다양한 인공지능 알고리즘을 적용한 모형의 신뢰성을 비교하였으며 이를 통하여 재난사고정보 분석에 적용가능 하며 질문(목적)에 부합하는 최적 인공지능 알고리즘을 도출하고자 하였다.

  • PDF