• Title/Summary/Keyword: 교통사고데이터

Search Result 365, Processing Time 0.025 seconds

Data Mining for Road Traffic Accident Type Classification (데이터 마이닝을 이용한 교통사고 심각도 분류분석)

  • 손소영;신형원
    • Journal of Korean Society of Transportation
    • /
    • v.16 no.4
    • /
    • pp.187-194
    • /
    • 1998
  • 본 연구는 교통사고 심각도와 관련된 중요변수를 찾고 이들 변수를 바탕으로 신경망, Decision Tree, 로지스틱 회귀분석을 이용하여 사고 심각도 분류 예측모형을 추정하였다. 다수의 범주형 변수로 이루어진 교통사고 통계원표상의 설명변수 들로부터 사고 심각도 변화에 영향력 있는 변수 선택을 위하여 독립성 검정을 위한 $x^2$ test와 Decision Tree를 이용하였고, 선택된 변수들은 신경망과 로지스틱 회귀분석의 기초로 이용되었다. 분석결과 세가지기법간에 분류정확도에는 유의한 차이가 없는 것으로 나타났다. 그러나 Decision Tree가 설명변수 선택능력과 분석수행시간, 사고 심각도 결정요인 식별의 용이함 측면에서 범주형 종속변수인 사고 심각도의 분석에 적합한 것으로 보이며 사고 심각도에는 보호장구가 가장 큰 영향을 미치는 것으로 재입증되었다.

  • PDF

Data Mining for Road Traffic Accident Type Classification (데이터 마이닝을 이용한 교통사고 심각도 분류분석)

  • 손소영
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10a
    • /
    • pp.373-381
    • /
    • 1998
  • 본 연구는 교통사고 심각도와 관련된 중요변수를 찾고 이들 변수를 바탕으로 신경망, Decision Tree, 로지스틱 회귀분석을 이용하여 사고 심각도 분류 예측모형을 추정하였다. 다수의 범주형 변수로 이루어진 교통사고 통계원표상의 설명변수 들로부터 사고 심각도변화에 영향력 있는 변수선택을 위하여 $X^2$ 독립성 검정과 Decision Tree를 이용하였고, 선택된 변수들은 신경망과 로지스틱 회귀분석의 기초로 이용되었다. 분석결과 세가지기법간에 분류정확도에는 유의한 차이가 없는 것으로 나타났다. 그러나 decision Tree가 설명변수 선택능력과 분석수행시간, 사고 심각도 결정요인 식별의 용이함 측면에서 범주형 종속변수인 사고 심각도의 분석에 적합합 것으로 보이며 사고 심각도에는 보호장구가 가장 큰 영향을 미치는 것으로 재입증되었다.

  • PDF

The Study on Traffic Accident Trend by Age with Time Series Models (연령별 사고 추세 및 시계열 분석모형에 관한 연구)

  • Yoon, Byoung-Jo;Ko, Eun-Hyeck;Yang, Sung-Ryong
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.255-256
    • /
    • 2016
  • 우리나라의 2015년 노인 인구는 전체 인구의 13.1%를 차지하고 2015년 경찰청 교통사고통계에 의하면 65세 이상 노인의 교통사고 사망률은 전체 교통사고 사망률의 약 2.57배 높은 것으로 나타났다. 본 연구에서는 노인 운전자와 성인 운전자의 사망사고에 대한 시계열 모형을 확인하고 추세에 큰 차이가 있는지 확인하고자 하였다. 분석방법인 시계열분석은 단기예측에 신뢰성이 더 높은 것으로 알려져 있다. ARIMA 모형으로 시계열분석을 하기 위해서는 최소 50~60개 이상의 관측값이 필요하며 따라서 본 연구에서는 인천광역시를 대상으로 2010년부터 2015년까지 6년간의 교통사고 데이터를 노인 운전자와 성인 운전자로 구분하고 사망사고에 대한 시계열 모형을 확인하였다.

  • PDF

Forecasting of Probability of Accident by Analizing the Traffic Accident Data : Main Intersections on Arterial Roads in Busan (교통사고 데이터분석을 통한 교통사고 위험도 산정 : 부산시 주간선도로 주요교차로를 대상으로)

  • Jung, Kun Young;Bae, Sang Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.111-117
    • /
    • 2017
  • The purpose of forecasting the traffic accident is to reduce the traffic accident. Therefore, the goal of this study is to provide severity of the accident by Forecasting of Probability of Accident. In Korea, accident data are distributed to the public via internet that includes numbers of accident and fatality as well. And crude level of accident severity in accordance with weather information for metropolitan city level are available by weekly. However, It can not reflect personal needs at specific origin of the travel for a certain traveller. This study aims to consider 68 major intersections with precipitation data, and eventually introduces link based accident severity. In estimating the accident severity both dynamic data such as drivers' characteristics, driving conditions and static data such as geometry of road, intersection characteristics are considered. Also, we identifies accident severity according to the accident type - 'vehicle to vehicle,' 'vehicle to person.' Finally, the outcomes of this study suggests taylor-made accident severity information for a specific traveller for a certain route.

A Study on the Development of Traffic Accident Information System Based on WebGIS (WebGIS 기반 교통사고정보관리 시스템 개발에 관한 연구)

  • Jeong, Su-Jin;Lim, Seung-Hyeon;Cho, Gi-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.1003-1010
    • /
    • 2006
  • This study developed a traffic accident information management system based on WebGIS that can process a lot of data for giving effectively diagnosis of traffic accidents in serious damage circumstances by traffic accident. Also, this study presents a way to compose and to convey traffic accident information. In addition, non-spatial attributes as well as spatial attributes about traffic accidents information be integrated and managed by the system. To provide Web service, we developed modules that can supply visually spatial information and traffic accidents data through ASP, Javascript, ArcIMS based on Web and constructed a server. And constructed system include a function that offer the now situation of traffic accident in real time, which supply the statistical data of traffic accident through Web as soon as user entry data in comparison with previous way that preparatory period until traffic accidents data is supplied to peoples had been long. Traffic accidents are analyzed with only nonspatial attribute by simply collecting in the past. However, system constructed by this study offer new function that can grasp visually accident spot circumstance and use detailed content and accurate location data as well as statistical data of traffic accidents. Also, it offer interface that can connect directly with accident charge policeman.

Traffic Accident Type Classification and Characteristic Analysis Research to Develop Autonomous Vehicle Accident Investigation Guidelines Using the National Forensic Service Data Base (국과수 데이터베이스를 활용하여 자율주행차 사고조사 가이드라인 개발을 위한 교통사고 유형 분류 및 특성 분석 연구)

  • Byungdeok In;Dayoung Park;Jongjin Park
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.1
    • /
    • pp.35-41
    • /
    • 2024
  • In order to verify autonomous driving scenarios and safety, a lot of driving and accident data is needed, so various organizations are conducting classification and analysis of traffic accident types. In this study, it was determined that accident recording devices such as EDR (Event Data Recorder) and DSSAD (Data Storage System for Automated Driving) would become an objective standard for analyzing the causes of autonomous vehicle accidents, and traffic accidents that occurred from 2015 to 2020 were analyzed. Using the database system of IGLAD (Initiative for the Global Harmonization of Accident Data), approximately 360 accident data of EDR-equipped vehicles were classified and their characteristics were analyzed by comparing them with accident types of ADAS (Advanced Driver Assistance System)-equipped vehicles. It will be used to develop autonomous vehicle accident investigation guidelines in the future.

Forecasting of Traffic Accident Occurrence Pattern Using LSTM (LSTM을 이용한 교통사고 발생 패턴 예측)

  • Roh, You Jin;Bae, Sang Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.59-73
    • /
    • 2021
  • There are many lives lost due traffic accidents, and which have not decreased despite advances in technology. In order to prevent traffic accidents, it is necessary to accurately forecast how they will change in the future. Until now, traffic accident-frequency forecasting has not been a major research field, but has been analyzed microscopically by traditional methods, mainly based on statistics over a previous period of time. Despite the recent introduction of AI to the traffic accident field, the focus is mainly on forecasting traffic flow. This study converts into time series data the records from 1,339,587 traffic accidents that occurred in Korea from 2014 to 2019, and uses the AI algorithm to forecast the frequency of traffic accidents based on driver's age and time of day. In addition, the forecast values and the actual values were compared and verified based on changes in the traffic environment due to COVID-19. In the future, these research results are expected to lead to improvements in policies that prevent traffic accidents.

Study on the Establishment of Tollgate Improvement Measures through Categorization of Expressway Tollgate Accidents and Network Clustering (고속도로 톨게이트 교통사고 유형화 및 네트워크 클러스터링 기반 톨게이트 개선방안 수립 연구)

  • Inyoung Kim;Hansol Jeong;Sangmin Park;Kwangseob, Lee;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.5
    • /
    • pp.1-17
    • /
    • 2024
  • In Korea, tollgates are designed in a complex manner with the coexistence of Hi-Pass and Toll Collection System lanes, frequently leading to traffic accidents. Despite the continuous efforts of the government to improve tollgates based on an analysis of accident factors, incidents still persist. Tollgates require drivers to be aware of numerous circumstances and events within a short distance, necessitating careful consideration of several factors and circumstances when analyzing traffic accidents. Therefore, this study applied the Term Frequency-Inverse Document Frequency method to traffic accident data to identify the factors and circumstances. Subsequently, the tollgate traffic accidents were categorized. Finally, effective tollgate improvement measures were proposed based on the categorization result.

Potential Risk Factors Analysis for Children Traffic Accident Based on Rescue Operations and Emergency Medical Services Data (구조구급활동 데이터 기반 어린이 교통사고 잠재적 위험요소 분석)

  • Kim, Yoo Jung;Hwang, Woo-Suk;Pyo, Kyung-Soo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.227-228
    • /
    • 2020
  • 어린이 교통관련 안전사고 잠재적 위험요인 및 개선요인을 도출하기 위해 119구조구급자료 중 6세부터 11세까지의 어린이 사고 자료를 분석하였다. 4개 광역지자체의 2014년부터 5년간 자료에 대한 사고내용을 전수 조사하여 분석하였다. 주요 사고 장소 및 시간대 분석 결과 어린이 교통사고는 하교시간 오후 시간대에 도로에서의 집중적 관리가 필요한 것으로 나타났다. 어린이 교통사고 잠재적 위험요인을 분석한 결과 자동차와 자전거를 이외 탈 것에 관한 사고비율이 최근 높아지고 있음을 확인하였다. 연간 교통사고 전체 건수에 대한 추이는 큰 변화는 없었으나 개인 탈것의 사고 증가는 뚜렷하였다. 그 중 킥보드에 대한 사고가 가장 많았고, 퍼스널 모빌리티가 가장 뚜렷한 증가 분야였다. 현재 어린이에게 적용되고 있는 퍼스널 모빌리티 등에 대한 안전가이드라인이나 규정 등은 미비하나 향후 퍼스널 모빌리티의 보급은 크게 늘어날 것으로 전망된다. 향후 어린이 교통사고를 줄이기 위해서는 어린이가 개인 전동 이동수단 활용 시 안전에 대한 규정마련과 교육이 시급하다.

  • PDF

Development of Freeway Traffic Incident Clearance Time Prediction Model by Accident Level (사고등급별 고속도로 교통사고 처리시간 예측모형 개발)

  • LEE, Soong-bong;HAN, Dong Hee;LEE, Young-Ihn
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.497-507
    • /
    • 2015
  • Nonrecurrent congestion of freeway was primarily caused by incident. The main cause of incident was known as a traffic accident. Therefore, accurate prediction of traffic incident clearance time is very important in accident management. Traffic accident data on freeway during year 2008 to year 2014 period were analyzed for this study. KNN(K-Nearest Neighbor) algorithm was hired for developing incident clearance time prediction model with the historical traffic accident data. Analysis result of accident data explains the level of accident significantly affect on the incident clearance time. For this reason, incident clearance time was categorized by accident level. Data were sorted by classification of traffic volume, number of lanes and time periods to consider traffic conditions and roadway geometry. Factors affecting incident clearance time were analyzed from the extracted data for identifying similar types of accident. Lastly, weight of detail factors was calculated in order to measure distance metric. Weight was calculated with applying standard method of normal distribution, then incident clearance time was predicted. Prediction result of model showed a lower prediction error(MAPE) than models of previous studies. The improve model developed in this study is expected to contribute to the efficient highway operation management when incident occurs.