본 연구는 교통사고 심각도와 관련된 중요변수를 찾고 이들 변수를 바탕으로 신경망, Decision Tree, 로지스틱 회귀분석을 이용하여 사고 심각도 분류 예측모형을 추정하였다. 다수의 범주형 변수로 이루어진 교통사고 통계원표상의 설명변수 들로부터 사고 심각도 변화에 영향력 있는 변수 선택을 위하여 독립성 검정을 위한 $x^2$ test와 Decision Tree를 이용하였고, 선택된 변수들은 신경망과 로지스틱 회귀분석의 기초로 이용되었다. 분석결과 세가지기법간에 분류정확도에는 유의한 차이가 없는 것으로 나타났다. 그러나 Decision Tree가 설명변수 선택능력과 분석수행시간, 사고 심각도 결정요인 식별의 용이함 측면에서 범주형 종속변수인 사고 심각도의 분석에 적합한 것으로 보이며 사고 심각도에는 보호장구가 가장 큰 영향을 미치는 것으로 재입증되었다.
본 연구는 교통사고 심각도와 관련된 중요변수를 찾고 이들 변수를 바탕으로 신경망, Decision Tree, 로지스틱 회귀분석을 이용하여 사고 심각도 분류 예측모형을 추정하였다. 다수의 범주형 변수로 이루어진 교통사고 통계원표상의 설명변수 들로부터 사고 심각도변화에 영향력 있는 변수선택을 위하여 $X^2$ 독립성 검정과 Decision Tree를 이용하였고, 선택된 변수들은 신경망과 로지스틱 회귀분석의 기초로 이용되었다. 분석결과 세가지기법간에 분류정확도에는 유의한 차이가 없는 것으로 나타났다. 그러나 decision Tree가 설명변수 선택능력과 분석수행시간, 사고 심각도 결정요인 식별의 용이함 측면에서 범주형 종속변수인 사고 심각도의 분석에 적합합 것으로 보이며 사고 심각도에는 보호장구가 가장 큰 영향을 미치는 것으로 재입증되었다.
Proceedings of the Korean Society of Disaster Information Conference
/
2016.11a
/
pp.255-256
/
2016
우리나라의 2015년 노인 인구는 전체 인구의 13.1%를 차지하고 2015년 경찰청 교통사고통계에 의하면 65세 이상 노인의 교통사고 사망률은 전체 교통사고 사망률의 약 2.57배 높은 것으로 나타났다. 본 연구에서는 노인 운전자와 성인 운전자의 사망사고에 대한 시계열 모형을 확인하고 추세에 큰 차이가 있는지 확인하고자 하였다. 분석방법인 시계열분석은 단기예측에 신뢰성이 더 높은 것으로 알려져 있다. ARIMA 모형으로 시계열분석을 하기 위해서는 최소 50~60개 이상의 관측값이 필요하며 따라서 본 연구에서는 인천광역시를 대상으로 2010년부터 2015년까지 6년간의 교통사고 데이터를 노인 운전자와 성인 운전자로 구분하고 사망사고에 대한 시계열 모형을 확인하였다.
KSCE Journal of Civil and Environmental Engineering Research
/
v.37
no.1
/
pp.111-117
/
2017
The purpose of forecasting the traffic accident is to reduce the traffic accident. Therefore, the goal of this study is to provide severity of the accident by Forecasting of Probability of Accident. In Korea, accident data are distributed to the public via internet that includes numbers of accident and fatality as well. And crude level of accident severity in accordance with weather information for metropolitan city level are available by weekly. However, It can not reflect personal needs at specific origin of the travel for a certain traveller. This study aims to consider 68 major intersections with precipitation data, and eventually introduces link based accident severity. In estimating the accident severity both dynamic data such as drivers' characteristics, driving conditions and static data such as geometry of road, intersection characteristics are considered. Also, we identifies accident severity according to the accident type - 'vehicle to vehicle,' 'vehicle to person.' Finally, the outcomes of this study suggests taylor-made accident severity information for a specific traveller for a certain route.
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.6D
/
pp.1003-1010
/
2006
This study developed a traffic accident information management system based on WebGIS that can process a lot of data for giving effectively diagnosis of traffic accidents in serious damage circumstances by traffic accident. Also, this study presents a way to compose and to convey traffic accident information. In addition, non-spatial attributes as well as spatial attributes about traffic accidents information be integrated and managed by the system. To provide Web service, we developed modules that can supply visually spatial information and traffic accidents data through ASP, Javascript, ArcIMS based on Web and constructed a server. And constructed system include a function that offer the now situation of traffic accident in real time, which supply the statistical data of traffic accident through Web as soon as user entry data in comparison with previous way that preparatory period until traffic accidents data is supplied to peoples had been long. Traffic accidents are analyzed with only nonspatial attribute by simply collecting in the past. However, system constructed by this study offer new function that can grasp visually accident spot circumstance and use detailed content and accurate location data as well as statistical data of traffic accidents. Also, it offer interface that can connect directly with accident charge policeman.
In order to verify autonomous driving scenarios and safety, a lot of driving and accident data is needed, so various organizations are conducting classification and analysis of traffic accident types. In this study, it was determined that accident recording devices such as EDR (Event Data Recorder) and DSSAD (Data Storage System for Automated Driving) would become an objective standard for analyzing the causes of autonomous vehicle accidents, and traffic accidents that occurred from 2015 to 2020 were analyzed. Using the database system of IGLAD (Initiative for the Global Harmonization of Accident Data), approximately 360 accident data of EDR-equipped vehicles were classified and their characteristics were analyzed by comparing them with accident types of ADAS (Advanced Driver Assistance System)-equipped vehicles. It will be used to develop autonomous vehicle accident investigation guidelines in the future.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.20
no.3
/
pp.59-73
/
2021
There are many lives lost due traffic accidents, and which have not decreased despite advances in technology. In order to prevent traffic accidents, it is necessary to accurately forecast how they will change in the future. Until now, traffic accident-frequency forecasting has not been a major research field, but has been analyzed microscopically by traditional methods, mainly based on statistics over a previous period of time. Despite the recent introduction of AI to the traffic accident field, the focus is mainly on forecasting traffic flow. This study converts into time series data the records from 1,339,587 traffic accidents that occurred in Korea from 2014 to 2019, and uses the AI algorithm to forecast the frequency of traffic accidents based on driver's age and time of day. In addition, the forecast values and the actual values were compared and verified based on changes in the traffic environment due to COVID-19. In the future, these research results are expected to lead to improvements in policies that prevent traffic accidents.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.23
no.5
/
pp.1-17
/
2024
In Korea, tollgates are designed in a complex manner with the coexistence of Hi-Pass and Toll Collection System lanes, frequently leading to traffic accidents. Despite the continuous efforts of the government to improve tollgates based on an analysis of accident factors, incidents still persist. Tollgates require drivers to be aware of numerous circumstances and events within a short distance, necessitating careful consideration of several factors and circumstances when analyzing traffic accidents. Therefore, this study applied the Term Frequency-Inverse Document Frequency method to traffic accident data to identify the factors and circumstances. Subsequently, the tollgate traffic accidents were categorized. Finally, effective tollgate improvement measures were proposed based on the categorization result.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.227-228
/
2020
어린이 교통관련 안전사고 잠재적 위험요인 및 개선요인을 도출하기 위해 119구조구급자료 중 6세부터 11세까지의 어린이 사고 자료를 분석하였다. 4개 광역지자체의 2014년부터 5년간 자료에 대한 사고내용을 전수 조사하여 분석하였다. 주요 사고 장소 및 시간대 분석 결과 어린이 교통사고는 하교시간 오후 시간대에 도로에서의 집중적 관리가 필요한 것으로 나타났다. 어린이 교통사고 잠재적 위험요인을 분석한 결과 자동차와 자전거를 이외 탈 것에 관한 사고비율이 최근 높아지고 있음을 확인하였다. 연간 교통사고 전체 건수에 대한 추이는 큰 변화는 없었으나 개인 탈것의 사고 증가는 뚜렷하였다. 그 중 킥보드에 대한 사고가 가장 많았고, 퍼스널 모빌리티가 가장 뚜렷한 증가 분야였다. 현재 어린이에게 적용되고 있는 퍼스널 모빌리티 등에 대한 안전가이드라인이나 규정 등은 미비하나 향후 퍼스널 모빌리티의 보급은 크게 늘어날 것으로 전망된다. 향후 어린이 교통사고를 줄이기 위해서는 어린이가 개인 전동 이동수단 활용 시 안전에 대한 규정마련과 교육이 시급하다.
Nonrecurrent congestion of freeway was primarily caused by incident. The main cause of incident was known as a traffic accident. Therefore, accurate prediction of traffic incident clearance time is very important in accident management. Traffic accident data on freeway during year 2008 to year 2014 period were analyzed for this study. KNN(K-Nearest Neighbor) algorithm was hired for developing incident clearance time prediction model with the historical traffic accident data. Analysis result of accident data explains the level of accident significantly affect on the incident clearance time. For this reason, incident clearance time was categorized by accident level. Data were sorted by classification of traffic volume, number of lanes and time periods to consider traffic conditions and roadway geometry. Factors affecting incident clearance time were analyzed from the extracted data for identifying similar types of accident. Lastly, weight of detail factors was calculated in order to measure distance metric. Weight was calculated with applying standard method of normal distribution, then incident clearance time was predicted. Prediction result of model showed a lower prediction error(MAPE) than models of previous studies. The improve model developed in this study is expected to contribute to the efficient highway operation management when incident occurs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.