• Title/Summary/Keyword: 교통사고데이터

Search Result 365, Processing Time 0.019 seconds

Analysis and Prediction Methods of Marine Accident Patterns related to Vessel Traffic using Long Short-Term Memory Networks (장단기 기억 신경망을 활용한 선박교통 해양사고 패턴 분석 및 예측)

  • Jang, Da-Un;Kim, Joo-Sung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.780-790
    • /
    • 2022
  • Quantitative risk levels must be presented by analyzing the causes and consequences of accidents and predicting the occurrence patterns of the accidents. For the analysis of marine accidents related to vessel traffic, research on the traffic such as collision risk analysis and navigational path finding has been mainly conducted. The analysis of the occurrence pattern of marine accidents has been presented according to the traditional statistical analysis. This study intends to present a marine accident prediction model using the statistics on marine accidents related to vessel traffic. Statistical data from 1998 to 2021, which can be accumulated by month and hourly data among the Korean domestic marine accidents, were converted into structured time series data. The predictive model was built using a long short-term memory network, which is a representative artificial intelligence model. As a result of verifying the performance of the proposed model through the validation data, the RMSEs were noted to be 52.5471 and 126.5893 in the initial neural network model, and as a result of the updated model with observed datasets, the RMSEs were improved to 31.3680 and 36.3967, respectively. Based on the proposed model, the occurrence pattern of marine accidents could be predicted by learning the features of various marine accidents. In further research, a quantitative presentation of the risk of marine accidents and the development of region-based hazard maps are required.

A Study on the Factor of Highway Traffic Accidents Affecting the EPDO (EPDO에 영향을 미치는 고속도로 교통사고 요인분석에 관한 연구)

  • Yoon, Byoung-Jo;Lee, So-Yeon;Jung, So-Yeon
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.251-252
    • /
    • 2017
  • 현재 우리나라는 자동차 수의 폭발적인 증가에도 불구하고 전체적인 교통사고 건수는 감소되는 추세를 보이고 있는데 반해 고속도로에서 발생하는 사고는 증가 추세를 보이고 있다. 따라서 고속도로의 사고 특성을 파악하여 사고를 감소시키기 위한 다양한 연구가 많이 진행되고 있다. 하지만 다양한 사고 유발요인들과 사고 데이터 제공의 한계로 인해 고속도로 교통사고의 특성에 대해 명확히 규명한 연구는 부족한 실정이다. 본 연구에서는 전국고속도로 3개년도(2013~2015)의 자료를 활용하여 전국 고속도로 교통사고의 특성을 파악하고 사고건당 EPDO(Equivalent Property Damage Only)를 계산하여 EPDO 값과 사고원인별, 도로 기하구조별, 기상조건, 운전자 성별, 나이대별 등 여러 사고 조건과의 상관관계를 회귀분석을 통해 분석하였다.

  • PDF

자동차용 블랙박스(사고영상기록장치) 데이터에 대한 보안기술 적용방안 연구

  • Kim, Won Joo;Kim, HongHee
    • Review of KIISC
    • /
    • v.24 no.2
    • /
    • pp.35-41
    • /
    • 2014
  • 자동차 산업 인프라의 발달로 자동차 사용 인구는 지속적으로 증가하고 있으며, 이에 따른 자동차 사고도 매년 증가하고 있다. 자동차 사고는 개인 및 사회의 비용손실과 즉결되므로 많은 운전자들이 자동차용 블랙박스(사고영상기록장치)를 구입하여 장착하고 있다. 이런 자동차용 블랙박스는 교통사고 시점의 영상을 저장 재생 하므로 정확한 사고원인을 규명하는데 활용되고 교통사고를 예방하는 효과가 있다. 그러나 그 이면에 자동차용 블랙박스는 자동차가 운행될 때 마다 영상을 촬영하고 저장되기 때문에 의도되지 않은 개인의 사생활이 노출 될 수 있으며 또한 저장된 사고영상 데이터를 의도적으로 조작하여 교통사고의 원인규명을 방해하는 문제가 발생 하기도 한다. 본 연구에서는 이러한 문제를 해결하기 위한 국내 관련 동향을 알아보고 보안기술을 적용 할 수 있는 방안을 제시하고자 한다.

Development of a Model for Calculating the Negligence Ratio Using Traffic Accident Information (교통사고 정보를 이용한 과실비율 산정 모델 개발)

  • Eum Han;Giok Park;Heejin Kang;Yoseph Lee;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.36-56
    • /
    • 2022
  • Traffic accidents occur in Korea are calculated with the 「Automobile Accident Negligence Ratio Certification Standard」 prepared by the 'General Insurance Association of Korea' and the insurance company's agreement or judgment is made. However, disputes are frequently occurring in calculating the negligence ratio. Therefore, it is thought that a more effective response would be possible if accident type according to the standard could be quickly identified using traffic accident information prepared by police. Therefore, this study aims to develop a model that learns the accident information prepared by the police and classifies it to match the accident type in the standard. In particular, through data mining, keywords necessary to classify the accident types of the standard were extracted from the accident data of the police. Then, models were developed to derive the types of accidents by learning the extracted keywords through decision trees and random forest models.

Predicting of the Severity of Car Traffic Accidents on a Highway Using Light Gradient Boosting Model (LightGBM 알고리즘을 활용한 고속도로 교통사고심각도 예측모델 구축)

  • Lee, Hyun-Mi;Jeon, Gyo-Seok;Jang, Jeong-Ah
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1123-1130
    • /
    • 2020
  • This study aims to classify the severity in car crashes using five classification learning models. The dataset used in this study contains 21,013 vehicle crashes, obtained from Korea Expressway Corporation, between the year of 2015-2017 and the LightGBM(Light Gradient Boosting Model) performed well with the highest accuracy. LightGBM, the number of involved vehicles, type of accident, incident location, incident lane type, types of accidents, types of vehicles involved in accidents were shown as priority factors. Based on the results of this model, the establishment of a management strategy for response of highway traffic accident should be presented through a consistent prediction process of accident severity level. This study identifies applicability of Machine Learning Models for Predicting of the Severity of Car Traffic Accidents on a Highway and suggests that various machine learning techniques based on big data that can be used in the future.

Classifying the severity of pedestrian accidents using ensemble machine learning algorithms: A case study of Daejeon City (앙상블 학습기법을 활용한 보행자 교통사고 심각도 분류: 대전시 사례를 중심으로)

  • Kang, Heungsik;Noh, Myounggyu
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.39-46
    • /
    • 2022
  • As the link between traffic accidents and social and economic losses has been confirmed, there is a growing interest in developing safety policies based on crash data and a need for countermeasures to reduce severe crash outcomes such as severe injuries and fatalities. In this study, we select Daejeon city where the relative proportion of fatal crashes is high, as a case study region and focus on the severity of pedestrian crashes. After a series of data manipulation process, we run machine learning algorithms for the optimal model selection and variable identification. Of nine algorithms applied, AdaBoost and Random Forest (ensemble based ones) outperform others in terms of performance metrics. Based on the results, we identify major influential factors (i.e., the age of pedestrian as 70s or 20s, pedestrian crossing) on pedestrian crashes in Daejeon, and suggest them as measures for reducing severe outcomes.

Prediction of Severities of Rental Car Traffic Accidents using Naive Bayes Big Data Classifier (나이브 베이즈 빅데이터 분류기를 이용한 렌터카 교통사고 심각도 예측)

  • Jeong, Harim;Kim, Honghoi;Park, Sangmin;Han, Eum;Kim, Kyung Hyun;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.1-12
    • /
    • 2017
  • Traffic accidents are caused by a combination of human factors, vehicle factors, and environmental factors. In the case of traffic accidents where rental cars are involved, the possibility and the severity of traffic accidents are expected to be different from those of other traffic accidents due to the unfamiliar environment of the driver. In this study, we developed a model to forecast the severity of rental car accidents by using Naive Bayes classifier for Busan, Gangneung, and Jeju city. In addition, we compared the prediction accuracy performance of two models where one model uses the variables of which statistical significance were verified in a prior study and another model uses the entire available variables. As a result of the comparison, it is shown that the prediction accuracy is higher when using the variables with statistical significance.

The Study on the Development of Analysis and Management System for Traffic Accident Spatial DB (교통사고 공간 DB관리 및 분석 시스템 개발에 관한 연구)

  • Yu Ji Yeon;Jeon Jae Yong;Jeon Hyeong Seob;Cho Gi Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.345-352
    • /
    • 2005
  • In up-to-date information anger time it is caused by with business of traffic accident control and analysis and two time it accomplishes a business. National Police Office which controls a traffic accident does not execute an up-to-date technique. And, it is working yet by the hand, There is to traffic accident analysis and the research regarding the analysis against the research which it follows in geography element and composition element and an accident cause is weak. Consequently, effectively establishment and it enforces a traffic safety policy and from the hazard which it evaluates traffic accident data the system and scientific analysis against a traffic accident occurrence cause and a feature in basic must become accomplished. The research which it sees constructs a traffic accident data in GIS base. It is like that, it uses the PDA where is not the collection of data of text form in existing and at real-time it converts store and an accident data rightly in standard traffic accident data form and it will be able to manage. It was related with a space data peculiarity and the research regarding the system development with the geography analysis data about an accident cause under manifesting it accomplished.

Development of Functional Scenarios for Automated Vehicle Assessment : Focused on Tollgate and Ramp Sections (자율주행차 평가용 상황 시나리오 개발 : 톨게이트, 램프 구간을 중심으로)

  • Jongmin Noh;Woori Ko;Joong Hyo Kim;Seok Jin Oh;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.250-265
    • /
    • 2022
  • Positive effects such as significantly reducing traffic accidents caused by human error can be expected by the introduction of Automated vehicles (AV). However, as new traffic safety issues are expected to occur in the future due to errors in H/W or S/W of autonomous vehicles and lack of its function, it is necessary to establish a scenario to evaluate the driving safety of AV. Therefore, in this study, functional scenario was developed to evaluate the driving safety of AV based on traffic accident data of the National Police Agency. Using the GIS program, QGIS, traffic accident data that occurred in the toll gate and ramp sections of expressway were extracted and accident summary items were checked to classify the types of accident. In addition, based on the results of accident type classification, functional scenario were developed that contains various dangerous situations in the tollgate and ramp sections.

Spatial clustering of pedestrian traffic accidents in Daegu (대구광역시 교통약자 보행자 교통사고 공간 군집 분석)

  • Hwang, Yeongeun;Park, Seonghee;Choi, Hwabeen;Yoon, Sanghoo
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.75-83
    • /
    • 2022
  • Korea, which has the highest pedestrian fatality rate among OECD countries, is making efforts to improve the safe walking environment by enacting laws focusing on pedestrian. Spatial clustering was conducted with scan statistics after examining the social network data related to traffic accidents for children and seniors. The word cloud was used to examine people's recognition Campaigns for children and literature survey for seniors were in main concern. Naedang and Yongsan are the regions with the highest relative risk of weak pedestrian for children and seniors. On the contrary, Bongmu and Beomeo are the lowest relative risk region. Naedang-dong and Yongsan-dong of Daegu Metropolitan City were identified as vulnerable areas for pedestrian safety due to the high risk of pedestrian accidents for children and the elderly. This means that the scan statistics are effective in searching for traffic accident risk areas.