최근 딥러닝은 도로 CCTV 동영상의 교통사고 검출에 널리 사용되지만 일인칭 동영상의 교통사고 검출은 분명히 어렵다. 일인칭 동영상은 역동적이고 시야가 제한되어 있기 때문이다. 본 논문에서는 일인칭 동영상을 분석하여 교통사고를 검출하는 방법을 제시한다. 이 방법은 교통 표현 특성을 분석하는 것 외에도 의미를 이해하고 교통 장면을 인코딩한다. 프레임의 표현 특징은 각 프레임 상의 물체의 특징과 물체의 위치 관계의 공간적 숨겨진 특진을 학습함으로써 얻어진다. 그 후에 프레임 표현 특징과 교통 장면의 특징이 연결되어 GRU 실행기에 공급된다. 여러 GRU 실행기는 분석한 후 사고가 발생했는지 확인된다. 이 방법은 높은 역학과 제한된 시야 문제를 효과적으로 해결한다.
본 논문에서는 자동차 블랙박스를 사용하여 촬영된 비디오에서 자동차 사고 발생 여부를 판단하는 방법을 제안한다. 제안한 방법은 우선 객체 추적 과정에서 구한 조감도 좌표를 사용하여 각 차량 사이의 거리에 기반을 두고 교통사고 여부를 판단한다. 그런데 거리만을 사용하여 사고 여부를 판단하는 경우 자동차가 밀집된 주·정차 환경에서는 오검출의 확률이 높아질 수 있다. 이를 위해 각 차량에 대한 움직임 벡터를 계산하고 벡터 간의 정보(사잇각과 크기 등)를 사용하여 차량의 주·정차 여부를 판단한 후 사고 검출 대상에서 배제할 수 있도록 한다. 주·정차 판단 여부를 통해 사고 검출의 정확도를 향상할 수 있는 것을 실험적으로 확인하였다.
횡단보도에서의 보행자 교통사고 방지를 위한 다양한 방법들이 연구되고 있다. 본 논문에서는 점멸 신호등 상황에서 보행자 교통사고를 감소시키기 위해 영상을 이용한 심층 신경망 기반 횡단보도 보행자 검출 방법을 소개한다. YOLOv5 와 Faster R-CNN 각각을 기반으로 다양한 버전의 횡단보도 보행자 검출기를 구현하고, 이번 실험에서 중점이 되는 이들의 수행 시간을 비교 평가하고 mAP@0.5 가 어느 정도인지 판단하여 가장 적합한 모델을 판단한다. 실험 결과 실시간 처리 측면에서 YOLOs 모델이 84 fps 를 달성함으로써 실시간 보행자 검출에 가장 좋은 성능을 보였다. 횡단보도의 상황은 상시 빠르게 변하므로 가장 빠른 처리 성능을 기록한 YOLOv5s 모델이 실시간 횡단보도 보행자 검출 시스템에 가장 적합한 것으로 판단된다.
본 논문에서는 교통 감시 시스템에서 차량추적방법을 제안한다. 교통 감시 카메라를 이용한 차량추적시스템은 차량 감시, 사고감지 및 교통정보를 확인할 수 있게 하는 시스템이다. 차량추적을 위하여 먼저 가우스 혼합 모델(Gaussian Mixture Model)을 이용하여 배경과 전경을 분리하고 형태학적 필터링을 이용하여 차량을 검출한다. 검출된 차량으로부터 SURF(Speed Up Robust Features) 매칭을 통하여 차량추적방법을 제안한다.
최근 자동차 산업의 활성화로 인해 교통사고 급증이 사회 문제화 되면서 사고를 미연에 방지할 수 있는 운전자 보조 시스템 연구가 활발하게 이루어지고 있다. 일반적으로 자동차 사고 원인의 70% 이상이 운전자 과실에 의해서 발생되고 전체 추돌사고의 75%가 시속 29km 이하의 속도에서 발생한다. 이를 예방하기 위해서 운전자의 인지 판단을 보조하는 시스템의 개발이 많이 이루어지고 있는데, 예를 들어 자동 주차 시스템, AVM(Around View Monitoring) 시스템 등이 있다. 본 논문에서는 AVM 시스템 중 원근 왜곡을 보정하는 단계에서 직선 및 교점을 검출할 때, NMS(Non-Maximum Suppression)를 적용한 허프 변환 방법을 사용할 것이다. 또한 기존의 Sub-Pixel을 이용한 직선 및 교점 검출 방법과 NMS을 적용한 허프 변환 방법을 사용한 직선 및 교점을 검출하는 방법을 비교 분석함으로써 제안하는 NMS를 적용한 허프변환을 이용한 직선 및 교점을 검출하는 방법을 사용하여 보다 효율적인 AVM 시스템의 구현 가능성을 검증한다.
자동차의 수가 점점 증가함에 따라 교통사고도 그 만큼 증가하고 있다. 교통사고의 주요 원인 중 하나가 졸음운전이나 부주의한 운전에 의한 것이다. 따라서 Real-Time으로 운전자의 제스처를 인식하여 졸음운전이나 부주의에 의한 사고를 사전에 예방하여 보다 안전한 운전을 돕는 서비스가 필요시 되고 있다. 본 논문에서는 운전자의 제스처 인식에 전처리 과정으로 운전자의 상반신에 대한 영상데이터에서 Adaboost를 이용하여 복잡한 배경과 다양한 환경에서 강인하게 얼굴 영역을 찾는 알고리즘을 소개한다.
교통사고를 재현하기 위해서는, 블랙박스를 이용해서 교통사고 전의 30초 데이터를 자동으로 저장해야 된다. 블랙박스 장치는 충돌 교통사고를 자동으로 검출할 수 있고, 사고전후에 미리 정의한 기한동안에 차량동의 그리고 운전사 기동을 기록할 수 있다. 그러나 뺑소니운전자를 붙잡는 것은 쉽지 않다. 왜냐하면, 2시간 또는 3 시간 후에는, 범인이 증거를 제거할 수 있다. 그러므로, 교통사고 현장에서 뺑소니 운전자를 검거하기 위해서, 본 논문에서는 조적 질문 언어 서버와 한 부속 데이타베이스를 이용한 알고리즘을 개발하였다.
자동차 보유량이 늘어남에 따라 남녀노소 모두 교통사고에 위협이 가해지고 있으며 교통사고가 자주 일어나는 점을 미연에 방지하기 위해 ADAS가 중요하다. 이러한 교통사고의 주범을 인지하고 방지하는 한 방법이 차선 검출을 이용하는 것이다. 따라서 본 논문에서는 영상처리를 통해 차선검출 기법을 연구하였고 영상처리에 의한 많은 에지 검출기법들 중 대표적인 소벨 에지 검출 기법과 캐니 에지 검출 기법을 사용하여, 두 가지 에지 검출기법을 통해 곡선과 직선의 차선 검출에서 가장 검출율이 좋은 기법을 찾아 직선의 차선을 검출하는 기법에 적용한다. 실험은 총 4,000프레임(주간영상 2,900프레임, 야간영상 1,100프레임)으로 실험을 수행하고, 실험 결과는 주간 영상에서 소벨 에지 검출 기법의 임계치는 2차미분차수로 검출하는 것이 가장 높은 후보 차선 검출율을 보였으며 검출율이 86.1%이고, 캐니 에지 검출 기법의 임계치는 Low=50, High=300에서 가장 높은 88.0%의 검출율을 보였다.
최근 자동차 업계는 무선 인터넷 기술의 발달과 응용의 확산으로 자율 주행의 연구가 활발히 진행 중에 있으나 교통사고는 아직도 해결되지 않는 부분이다. 사고의 요인으로는 졸음운전, 운전자의 실수, 환경적인 요소, 잘못된 도로 구조 등이 있으며 사고 원인의 하나인 운전자의 운전 행태와 특성은 교통사고에 큰 영향을 미친다. 본 논문에서는 자율 주행 및 자가 운전을 하는 경우에 발생 할 수 있는 교통사고에서 사고발생 전에 나타날 수 있는 사행운전의 특성을 판단하기 위한 연구를 수행하였다. 기존 연구에서는 영상기법이나 1,2차로의 운전행태로 횡방향 각속도 변화의 특성으로 사행 운전을 판단하였으나 본 논문은 센서의 값을 이용하여 횡방향의 이동거리와 임계 범위를 설정하여 사행 운전을 검출하는 연구를 진행하였다.
근래에 고령운전자의 증가와 다양한 차량용 멀티미디어 기기의 등장으로 운전 중 운전자의 시각적 주의 결핍 및 분산되어 교통신호등 오인식으로 인해 교통사고가 증가하고 있는 상황이다. 이를 보완하기 위해 일반적인 교통신호등 검출연구들은 색상 임계치, 템플릿 매칭, 학습기 기반 등의 방안이 제시 되었으나 색상 임계치의 경우 시내 도로와 같이 복잡한 배경과 주위 환경변화에 강인하지 못하고, 야간 시간대의 경우 템플릿 및 학습기 기반의 검출방안의 경우 그 인식도가 떨어지는 문제점이 존재한다. 따라서 제안한 방안에서는 교통신호등의 구조적인 형태 정보(모양, 밝기, 대비, 색상 등)을 기반 한 시각적 주의 영역과 spot-lights 영역 검출을 통해 복잡한 시내 도로 환경에서 교통신호등을 검출하는 방안을 제안한다. 교통신호등은 운전자의 시인성을 높일 수 있는 위치에 설치되고 또한 구조적인 고유한 형태와 색상을 지니고 있는 특징들을 이용하여 교통신호등을 검출한다. 제안한 방안에서는 입력된 칼라영상에서 특징정보들 간의 다차원 가우시안 파라미드 영상들을 생성하고 각 영상들 간의 대비차이 계산하여 현저하게 두드러진 영역들을 검출하고, 밝기 영상에서 주위 영역과 현저하게 밝은 spot-lights 영역들을 검출한다. 그리고 검출된 두 영역들의 모양과 색상 분석을 통해 교통신호등을 검출한다. 제안한 방법을 다양한 시간대와 시내 도로에서 실험한 결과, 교통신호등 검출률은 83.2%이고 프레임 당 처리 시간은 0.68초이다. 이것을 통해 사후판독 기능이 차량 영상기록장치에 결합한 안전운전 지원시스템으로 제안한 방안이 유용하게 적용될 수 있음을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.