• Title/Summary/Keyword: 교통사고건수 추정모형

Search Result 14, Processing Time 0.022 seconds

Development of Design Criteria for Crosswalks at Signalized Intersections (신호교차로 횡단보도 설치기준에 관한 연구)

  • 하태준;박제진;이형무
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.4
    • /
    • pp.47-56
    • /
    • 2003
  • There are no specific criteria deciding what type of crosswalk installs although 4 typed crosswalks at signalized intersections classify according to number of stop line, spacing from the border of intersections and existence of traffic islands or not. Accidents involving pedestrians at signalized intersections are classified by type of crosswalks by traffic volume, pedestrian volume at crosswalk, intersection geometry and phase in view of pedestrians' safety at 50 intersections in Gwangju. The Multiple regression models are applied to express the pedestrian accident rate. In addition, process deciding what type of crosswalk installs which includes accident rate involved pedestrian is changed into number of accident is represented to reduce number of accidents. This paper presents what type of crosswalk installs in order to reduce pedestrian involved accidents at new or existing crosswalk.

Level of Service of Signalized Intersections Considering both Delay and Accidents (지체와 사고를 고려한 신호교차로 서비스수준 산정에 관한 연구)

  • Park, Je-Jin;Park, Seong-Yong;Ha, Tae-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.169-178
    • /
    • 2008
  • Level of Service (LOS) is one of ways to evaluate operational conditions. It is very important factor in evaluation especially for the facility of highways. However, some studies proved that ${\upsilon}/c$ ratio and accident rate is appeared like a second function which has a U-form. It means there is a gap between LOS and safety of highway facilities. Therefore, this study presents a method for evaluation of a signalized intersection which is considered both smooth traffic operation (delay) and traffic safety (accident). Firstly, as a result of our research, accident rates and EPDO are decreased when it has a big delay. In that reason, it is necessary to make a new Level of Service included traffic safety. Secondly, this study has developed a negative binominal regression model which is based on the relation between accident patterns and stream. Thirdly, standards of LOS are presented which is originated from calculation between annual delay costs and annual accident cost at each intersection. Lastly, worksheet form is presented as an expression to an estimation step of a signalized intersection with traffic accident prediction model and new LOS.

A Study on the Road Safety Analysis Model: Focused on National Highway Areas in Cheonbuk Province (도로 안전성 분석 모형에 관한 연구: 전라북도 국도 권역을 중심으로)

  • Lim, Joonbeom;Kim, Joon-Ki;Lee, Soobeom;Kim, Hyunjin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.583-595
    • /
    • 2014
  • Currently, Korean transportation policies are aiming for increase of safety and environment-friendly and efficient operation, by avoiding construction and expansion of roads, and upgrading road alignments and facilities. This is revealed by that there have been 22 road expansion projects (30%) and 50 road improvement projects (70%) under the 3rd Five-Year Plan for National Highways ('11~'15), while there were 53 road expansion projects (71%) and 22 road improvement projects (29%) under the 2nd Five-Year Plan for National Highways. For more effective road improvement projects, there is a need of choosing projects after an objective and scientific safety assessment of each road, and assessing safety improvement depending on projects. This study is intended to develop a model for this road safety analysis and assessment. The major objective of this study is creating a road safety analysis and assessment model appropriate for Korean society, based on the HSM (Highway Safety Manual) of the U.S. In order to build up data for model development, the sections thought to have identical geometrical structure factors in 5 lines, Cheonbuk province, were divided as homogeneous sections, and representative values of geometric structures, facilities, traffic volume, climate conditions and land usage were collected from the 1,452 sections divided. In order to build up data for model development, the sections thought to have identical geometrical structure factors in 5 lines, Cheonbuk province, were divided as homogeneous sections, and representative values of geometric structures, facilities, traffic volume, climate conditions and land usage were collected from the 1,452 sections divided. The collected data was processed correlation analysis of each road element was implemented to see which factor had a big effect on traffic accidents. On the basis of these results, then, an accident model was established as a negative binomial regression model.Using the developed model, an Crash Modification Factor (CMF) which determines accident frequency changes depending on safety performance function (SPF) predicting the number of accident occurrence through traffic volume and road section expansion, road geometric structure and traffic properties, was extracted.

Temporal hierarchical forecasting with an application to traffic accident counts (시간적 계층을 이용한 교통사고 발생건수 예측)

  • Jun, Gwanyoung;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.229-239
    • /
    • 2018
  • This paper introduces how to adopt the concept of temporal hierarchies to forecast time series data. Similarly as in hierarchical cross-sectional data, temporal hierarchies can be constructed for any time series data by means of non-overlapping temporal aggregation. Reconciliation forecasts with temporal hierarchies result in more accurate and robust forecasts when compared with the independent base and bottom-up forecasts. As an empirical example, we forecast traffic accident counts with temporal hierarchies and observe that reconciliation forecasts are superior to the base and bottom-up forecasts in terms of forecast accuracy.