• Title/Summary/Keyword: 교통망부하

Search Result 10, Processing Time 0.032 seconds

Solution Algorithms for Logit Stochastic User Equilibrium Assignment Model (확률적 로짓 통행배정모형의 해석 알고리듬)

  • 임용택
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.95-105
    • /
    • 2003
  • Because the basic assumptions of deterministic user equilibrium assignment that all network users have perfect information of network condition and determine their routes without errors are known to be unrealistic, several stochastic assignment models have been proposed to relax this assumption. However. it is not easy to solve such stochastic assignment models due to the probability distribution they assume. Also. in order to avoid all path enumeration they restrict the number of feasible path set, thereby they can not preciously explain the travel behavior when the travel cost is varied in a network loading step. Another problem of the stochastic assignment models is stemmed from that they use heuristic approach in attaining optimal moving size, due to the difficulty for evaluation of their objective function. This paper presents a logit-based stochastic assignment model and its solution algorithm to cope with the problems above. We also provide a stochastic user equilibrium condition of the model. The model is based on path where all feasible paths are enumerated in advance. This kind of method needs a more computing demand for running the model compared to the link-based one. However, there are same advantages. It could describe the travel behavior more exactly, and too much computing time does not require than we expect, because we calculate the path set only one time in initial step Two numerical examples are also given in order to assess the model and to compare it with other methods.

Assessing the impact of human activities on nitrogen and phosphorus emissions and stream water quality in Nakdong River basin (인간활동이 낙동강 유역의 질소, 인의 부하량과 하천 수질에 미치는 영향 평가)

  • Woo, Soyoung;Kim, Wonjin;Kim, Yongwon;Lee, Yonggwan;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.49-49
    • /
    • 2022
  • 인구 증가, 도시화, 산업 발달, 교통량 증가 등의 다양한 인간활동은 기후변화와 더불어 자연의 고유한 환경을 변화시킴으로써, 기존에 평형을 유지하던 생태계를 교란시킨다. 인간활동으로 인해 물 이용량과 배출되는 오염물질이 증가하여 물 스트레스 수준은 높아지고, 수질오염은 더욱 심각해지고 있다. 우리나라는 1980년대부터 산업화, 도시화가 빠르게 진행되어 유역 환경을 변화시키며 하천 생태계가 악화되고 있다. 특히 낙동강 유역은 조류 발생과 그로 인한 심각한 부영양화 문제가 대두되는 유역으로, 유역에서 발생하고 하천으로 유입되는 질소와 인의 부하량의 관리가 필요하다. 따라서 본 연구에서는 하천 생태계에 영향을 미치는 다양한 인간활동 중 농업, 축산과 같은 비점오염원, 하수종말처리장 등의 점오염원 그리고 대기 질소 침착으로 인한 낙동강 유역에서 발생하는 질소, 인의 부하량을 산정하였다. 그리고 하천 수질관측망 자료를 이용하여, 유역의 질소, 인 부하량 중 하천으로 유입되는 질소와 인의 부하량의 비율을 산정하여 각 오염원이 하천 수질에 미치는 영향을 정량적으로 분석하고자 한다. 낙동강 유역의 7개의 주요 수계 내성천, 위천, 감천, 금호강, 남강, 황강, 밀양강을 대상으로 인구수, 토지이용 변화 등의 유역특성을 고려하여, 수계별 과거 1980년에서 현재까지의 부하량 트렌드를 분석하고, 주요 오염원을 추적하고자 한다.

  • PDF

Path-based Dynamic User Equilibrium Assignment Model using Simulation Loading Method (시뮬레이션 부하기법을 이용한 경로기반 동적통행배정모형의 개발)

  • 김현명;임용택;백승걸
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.3
    • /
    • pp.101-113
    • /
    • 2001
  • Since late 1970s. one of the principal research areas in transportation problem is dynamic traffic assignment (DTA). Although many models have been developed regarding DTA, yet they have some limits of describing real traffic patterns. This reason comes from the fact that DTA model has the time varying constraints such as state equation, flow propagation constraint, first in first out(FIFO) rule and queuing evolution. Thus, DTA model should be designed to satisfy these constraints as well as dynamic route choice condition, dynamic user equilibrium. In this respect, link-based DTA models have difficulty in satisfying such constraints because they have to satisfy the constraints for each link, while path-based DTA models may easily satisfy them. In this paper we develop a path-based DTA model. The model includes point queue theory to describe the queue evolution and simulation loading method for depicting traffic patterns in more detail. From a numerical test, the model shows promising results.

  • PDF

Dynamic Network Loading Model based on Moving Cell Theory (Moving Cell Theory를 이용한 동적 교통망 부하 모형의 개발)

  • 김현명
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.113-130
    • /
    • 2002
  • In this paper, we developed DNL(Dynamic Network Loading) model based on Moving cell theory to analyze the dynamic characteristics of traffic flow in congested network. In this paper vehicles entered into link at same interval would construct one cell, and the cells moved according to Cell following rule. In the past researches relating to DNL model a continuous single link is separated into two sections such as running section and queuing section to describe physical queue so that various dynamic states generated in real link are only simplified by running and queuing state. However, the approach has some difficulties in simulating various dynamic flow characteristics. To overcome these problems, we present Moving cell theory which is developed by combining Car following theory and Lagrangian method mainly using for the analysis of air pollutants dispersion. In Moving cell theory platoons are represented by cells and each cell is processed by Cell following theory. This type of simulation model is firstly presented by Cremer et al(1999). However they did not develop merging and diverging model because their model was applied to basic freeway section. Moreover they set the number of vehicles which can be included in one cell in one interval so this formulation cant apply to signalized intersection in urban network. To solve these difficulties we develop new approach using Moving cell theory and simulate traffic flow dynamics continuously by movement and state transition of the cells. The developed model are played on simple network including merging and diverging section and it shows improved abilities to describe flow dynamics comparing past DNL models.

A Probabilistic Filtering Technique for Improving the Efficiency of Local Search (국지적 탐색의 효율향상을 위한 확률적 여과 기법)

  • Kang, Byoung-Ho;Ryu, Kwang-Ryel
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.246-254
    • /
    • 2007
  • Local search algorithms start from a certain candidate solution and probe its neighborhood to find ones with improved quality. This paper proposes a method of probabilistically filtering out bad-looking neighbors based on a simple low-cost preliminary evaluation heuristics. The probabilistic filtering enables us to save time wasted on fully evaluating those solutions that will eventually be trashed, and thus improves the search efficiency by allowing us to spend more time on examining better looking solutions. Experiments with two large-scaled real-world problems, which are a traffic signal control problem in traffic network and a load balancing problem in production scheduling, have shown that the proposed method finds better quality solutions, given the same amount of CPU time.

Dynamic traffic assignment based on arrival time-based OD flows (도착시간 기준 기종점표를 이용한 동적통행배정)

  • Kim, Hyeon-Myeong
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.143-155
    • /
    • 2009
  • A dynamic traffic assignment (DTA) has recently been implemented in many practical projects. The core of dynamic model is the inclusion of time scale. If excluding the time dimension from a DTA model, the framework of a DTA model is similar to that of static model. Similar to static model, with given exogenous travel demand, a DTA model loads vehicles on the network and finds an optimal solution satisfying a pre-defined route choice rule. In most DTA models, the departure pattern of given travel demand is predefined and assumed as a fixed pattern, although the departure pattern of driver is changeable depending on a network traffic condition. Especially, for morning peak commute where most drivers have their preferred arrival time, the departure time, therefore, should be modeled as an endogenous variable. In this paper, the authors point out some shortcomings of current DTA model and propose an alternative approach which could overcome the shortcomings of current DTA model. The authors substitute a traditional definition for time-dependent OD table by a new definition in which the time-dependent OD table is defined as arrival time-based one. In addition, the authors develop a new DTA model which is capable of finding an equilibrium departure pattern without the use of schedule delay functions. Three types of objective function for a new DTA framework are proposed, and the solution algorithms for the three objective functions are also explained.

A Handover Mechanism Between Local Mobility Anchors in Proxy Mobile IPv6-based Vehicular Communication Networks (Proxy Mobile IPv6 기반 차량통신망에서 Local Mobility Anchor간 핸드오버 기법)

  • Lim, Yu-Jin;Ahn, Sang-Hyun;Cho, Kwon-Hee
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.243-250
    • /
    • 2010
  • Vehicular communication networking is one of the most important building blocks of Intelligent Transportation System (ITS). The vehicular communication network is a wireless communication system enabling vehicles to communicate with each other as well as with roadside base stations. Mobility management of vehicles which move at high speeds and occasionally make a long journey is an interesting research area of vehicular communication networks. Recently, The Proxy Mobile IPv6 (PMIPv6) protocol is proposed for network-based mobility management to reduce the overhead of mobile nodes. PMIPv6 shifts the burden of the mobility management from mobile nodes to network agents to decrease the overhead and latency for the mobility management. In this paper, we derive the scenario of deploying PMIPv6 in vehicular communication networks and propose a new LMA handover mechanism for realizing the scenario. By carrying out the ns-2 based simulations, we verify the operability of the proposed mechanism.

The Development of Predictive Multiclass Dynamic Traffic Assignment Model and Algorithm (예측적 다중계층 동적배분모형의 구축 및 알고리즘 개발)

  • Kang, Jin-Gu;Park, Jin-Hee;Lee, Young-Ihn;Won, Jai-Mu;Ryu, Si-Kyun
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.5
    • /
    • pp.123-137
    • /
    • 2004
  • The study on traffic assignment is actively being performed which reflect networks status using time. Its background is increasing social needs to use traffic assignment models in not only hardware area of road network plan but also software area of traffic management or control. In addition, multi-class traffic assignment model is receiving study in order to fill a gap between theory and practice of traffic assignment model. This model is made up of two, one of which is multi-driver class and the other multi-vehicle class. The latter is the more realistic because it can be combined with dynamic model. On this background, this study is to build multidynamic model combining the above-mentioned two areas. This has been a theoretic pillar of ITS in which dynamic user equilibrium assignment model is now made an issue, therefore more realistic dynamic model is expected to be built by combining it with multi-class model. In case of multi-vehicle, FIFO would be violated which is necessary to build the dynamic assignment model. This means that it is impossible to build multi-vehicle dynamic model with the existing dynamic assignment modelling method built under the conditions of FIFO. This study builds dynamic network model which could relieve the FIFO conditions. At the same time, simulation method, one of the existing network loading method, is modified to be applied to this study. Also, as a solution(algorithm) area, time dependent shortest path algorithm which has been modified from existing shortest path algorithm and the existing MSA modified algorithm are built. The convergence of the algorithm is examined which is built by calculating dynamic user equilibrium solution adopting the model and algorithm and grid network.

A User Optimer Traffic Assignment Model Reflecting Route Perceived Cost (경로인지비용을 반영한 사용자최적통행배정모형)

  • Lee, Mi-Yeong;Baek, Nam-Cheol;Mun, Byeong-Seop;Gang, Won-Ui
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.2
    • /
    • pp.117-130
    • /
    • 2005
  • In both deteministic user Optimal Traffic Assignment Model (UOTAM) and stochastic UOTAM, travel time, which is a major ccriterion for traffic loading over transportation network, is defined by the sum of link travel time and turn delay at intersections. In this assignment method, drivers actual route perception processes and choice behaviors, which can become main explanatory factors, are not sufficiently considered: therefore may result in biased traffic loading. Even though there have been some efforts in Stochastic UOTAM for reflecting drivers' route perception cost by assuming cumulative distribution function of link travel time, it has not been fundamental fruitions, but some trials based on the unreasonable assumptions of Probit model of truncated travel time distribution function and Logit model of independency of inter-link congestion. The critical reason why deterministic UOTAM have not been able to reflect route perception cost is that the route perception cost has each different value according to each origin, destination, and path connection the origin and destination. Therefore in order to find the optimum route between OD pair, route enumeration problem that all routes connecting an OD pair must be compared is encountered, and it is the critical reason causing computational failure because uncountable number of path may be enumerated as the scale of transportation network become bigger. The purpose of this study is to propose a method to enable UOTAM to reflect route perception cost without route enumeration between an O-D pair. For this purpose, this study defines a link as a least definition of path. Thus since each link can be treated as a path, in two links searching process of the link label based optimum path algorithm, the route enumeration between OD pair can be reduced the scale of finding optimum path to all links. The computational burden of this method is no more than link label based optimum path algorithm. Each different perception cost is embedded as a quantitative value generated by comparing the sub-path from the origin to the searching link and the searched link.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.