• Title/Summary/Keyword: 교통량-속도-밀도 관계

Search Result 19, Processing Time 0.023 seconds

A Study on Congestion Toll Pricing: The Case of Beijing, China (혼잡통행료 산정에 관한 연구 - 중국 베이징의 사례 -)

  • Jiang, Xue;Kim, Ho Yeon
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.107-118
    • /
    • 2018
  • Due to the rapid economic development, traffic congestion has become a dire concern in Beijing, China. Levying a congestion toll is seen as the most effective solution to the problem. Building a congestion pricing model is a crucial step in implementing a workable toll scheme. Unlike previous attempts, this study not only covers the theoretical discussion but also considers three practical issues: the speed-density relationship, the value of travel time savings, and the determination of optimal traffic volume. We estimate the speed-density relationship by regression models and the value of travel time saved through survey results. We further suggest a way through which the government could identify the optimal traffic flow by a series of trial-and-errors, without the knowledge of exact road demand structure. Finally, a practical tolling scheme is proposed for Beijing's second ring road along with some policy recommendations.

Traffic Impacts of Transit-oriented Urban Regeneration (TOD형 도시재생사업의 교통영향 분석)

  • Hwang, Kee Yeon;Cho, Yong Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.469-476
    • /
    • 2008
  • Recently, TOD gains popularity as a traffic solution measure of high density urban regeneration projects. The purpose of this study is to investigate traffic impacts of high density TOD projects, and to identify the issues to be resolved. For a case study, it chooses Gangnamgucheong station in Gangnam area served by two subway lines, and designates 400m radius from the station as a site for high-density development. The MOEs chosen for this study is traffic volume, time, distance, speed, and mode share. The SECOM model is adopted for traffic simulation. The analysis results show that high-density TOD is an effective tool for traffic improvement even with only one station area being implemented. It is found that the traffic volume increases near the station in nature where high-density development occurs, but it declines overall in the rest of Gangam area. The total travel time and distance of passenger vehicles decline, meaning that the traffic condition becomes better than before. With regulation on parking supply, the improvement becomes more vivid. In terms of the changes of traffic speed, both alternatives show 4.1% increase in speed, but the difference between alternatives is not quite noticeable because of the induced vehicle demand driven to the streets with improved traffic condition. The mode share changes occur for the benefit of subway ridership, because the study station is equipped with two subway line services. When mixed with parking supply restriction, the impact becomes clearer.

A study on the Traffic Density Collect System using View Synthesis and Data Analysis (영상정합을 이용한 교통밀도 수집방법과 수집 데이터 비교분석)

  • Park, Bumjin;Roh, Chang-gyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.77-87
    • /
    • 2018
  • Traffic Density is the most important of the three primary macroscopic traffic stream parameters, because it is most directly related to traffic demand(Traffic Engineering, 2004). It is defined as the number of existing vehicles within a given distance at a certain time. However, due to weather, road conditions, and cost issues, collecting density directly on the field is difficult. This makes studies of density less actively than those of traffic volume or velocity. For these reasons, there is insufficient attempts on divers collecting methods or researches on the accuracy of measured values. In this paper, we used the 'Density Measuring System' based on the synthesise technology of several camera images as a method to measure density. The collected density value by the 'Density Mesuring System' is selected as the true value based on the density define, and this value was compared with the density calculated by the traditional measurement methods. As a result of the comparison, the density value using the fundamental equation method is the closest to the true value as RMSE shows 1.8 to 2.5. In addition, we investigated some issues that can be overlooked easily such as the collecting interval to be considered on collecting density directly by calculating the moment density and the average density. Despite the actual traffic situation of the experiment site is LOS B, it is difficult to judge the real traffic situation because the moment density values per second are observed max 16.0 (veh/km) to min 2.0 (veh/km). However, the average density measured for 15 minutes at 30-second intervals was 8.3-7.9 (veh/km) and it indicates precisely LOS B.

Development of Traffic Situation Integrated Monitoring Indicators Combining Traffic and Safety Characteristics (교통소통과 안전 특성을 결합한 교통상황 모니터링 지표 개발)

  • Young-Been Joo;Jun-Byeong Chae;Jae-Seong Hwang;Choul-Ki Lee;Sang-Soo Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.13-25
    • /
    • 2024
  • In traffic management, gaps in understanding traffic conditions continue to exist. While the self-belonging problem indicator develops relative to speed, belonging, and self-based relative inclination, it does not apply elimination criteria that may indicate situations that contrast with attribute-specific problems. In this study, we develop integrated indicators that specify communication situations and safety levels for modeling. We review indicators of changes in traffic conditions and raise safety issues, reviewing the indicators so that ITS data can be applied, analyzing the relationships between indicators through factor analysis. We develop combined, integrated indicators that can show changes and stability in traffic situations and that can be applied in traffic information centers to contribute to the development of a traffic environment that can monitor related traffic conditions.

Development of Impulse Propagation Model between Lanes through Temporal-Spatial Analysis (시공간적 분석을 통한 차로간 충격량 전파모형 개발)

  • Kim, Sang-Gu;Ryu, Ju-Hyeon
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.3
    • /
    • pp.123-137
    • /
    • 2011
  • In general, flow propagation has been explained using the shock wave theory which is expressed as a function of variations in volume and density. However, the theory has certain limitation in portraying heterogeneous flow, e.g., flow propagation between lanes. Motivated by this fact, this study seeks a new measure for analyzing the propagation characteristics of traffic flow at three sections of highway (i.e., merging area, weaving section, and basic section) from temporal and spatial perspectives, and then develops a model for estimating the measure for the flow propagation. The "shock wave speed" which is the measure widely adopted in literature, was first applied to describe the propagation characteristics, but it was hard to find distinct characteristics in the propagation. This finding inspires to develop a new measure named "Impulse Volume". It is shown that the measure better explains the propagation characteristics at the three study sections of highway. In addition, several models are also developed by performing multi-regression analyses to explain the flow propagation between lanes. The models proposed in this paper can be distinguished in three sections and the lane placement.

LOS Evaluation of Urban Freeway by the Occupancy Characteristics (점유율 특성을 이용한 도시고속도로의 서비스수준(LOS) 평가에 관한 연구)

  • Kim, Tae gon;Moon, Byoung Keun;Jo, In Kook;Jung, Yu Na
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3D
    • /
    • pp.335-345
    • /
    • 2009
  • Generally, density is used as a measure of effectiveness (MOE) of the level of service (LOS) for the basic segment of the roadway facility, but can not express the operational condition of the roadway facility properly because there can be an error in the computed density compared with the density measured in the field. Thus, the purpose of this study is to investigate the real-time traffic characteristic data (traffic flow, speed, occupancy, headway, spacing, etc.) from the detectors installed on the mainline section of urban freeway under the study, analyze the maximum flow rate from the relationship between the real-time traffic characteristics collected, and evaluate the LOS criteria within the basic segment of the urban freeway based on the relationship between the occupancy and the v/c ratio depending on the level of service.

Analysis of Breakdown Characteristics by Lane Interaction at Freeway Merging Area with a View of Time and Space (차로별 교통류 상호영향에 따른 고속도로 합류부 교통와해 특성 분석에 관한 연구)

  • Kim, Sang-Gu;Kim, Yeong-Chun
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.2 s.95
    • /
    • pp.73-81
    • /
    • 2007
  • The purpose of this paper is to perform a basic study on the interaction between lanes, which can be achieved through analyzing traffic breakdown at the microscopic level. Using aerial photographic data for the microscopic analysis, this study analyzed the characteristics of traffic flow at a merging area. This research produced aggregated traffic data such as flows, speeds, and densities in 30 second intervals by lane for the macroscopic analysis and individual headway data by lane for the microscopic analysis. The paper contains an analysis of lane characteristics through flows, speeds, densities, and headway variations and also investigates the influence of ramp flows on mainline flows with space-time diagrams. Firstly, the merging area in this study is divided into three sections: before-merging, during-merging, and after-merging. The transition process was analyzed at each lane. Secondly, the breakdown was observed in detail with data divided in 50-foot units. The breakdown was checked through the relationships between ramp and freeway mainline flows, various techniques were proposed to analyze the breakdown, and the formation of breakdown was introduced as three stages in this study. In the near future, the findings of this study could contribute to determining the dynamic capacity on freeways by easily understanding changeable traffic breakdown patterns over time and space.

A Study on Link Travel Time Prediction by Short Term Simulation Based on CA (CA모형을 이용한 단기 구간통행시간 예측에 관한 연구)

  • 이승재;장현호
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.91-102
    • /
    • 2003
  • There are two goals in this paper. The one is development of existing CA(Cellular Automata) model to explain more realistic deceleration process to stop. The other is the application of the updated CA model to forecasting simulation to predict short term link travel time that takes a key rule in finding the shortest path of route guidance system of ITS. Car following theory of CA models don't makes not response to leading vehicle's velocity but gap or distance between leading vehicles and following vehicles. So a following vehicle running at free flow speed must meet steeply sudden deceleration to avoid back collision within unrealistic braking distance. To tackle above unrealistic deceleration rule, “Slow-to-stop” rule is integrated into NaSch model. For application to interrupted traffic flow, this paper applies “Slow-to-stop” rule to both normal traffic light and random traffic light. And vehicle packet method is used to simulate a large-scale network on the desktop. Generally, time series data analysis methods such as neural network, ARIMA, and Kalman filtering are used for short term link travel time prediction that is crucial to find an optimal dynamic shortest path. But those methods have time-lag problems and are hard to capture traffic flow mechanism such as spill over and spill back etc. To address above problems. the CA model built in this study is used for forecasting simulation to predict short term link travel time in Kangnam district network And it's turned out that short term prediction simulation method generates novel results, taking a crack of time lag problems and considering interrupted traffic flow mechanism.

Development of A Network loading model for Dynamic traffic Assignment (동적 통행배정모형을 위한 교통류 부하모형의 개발)

  • 임강원
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.149-158
    • /
    • 2002
  • For the purpose of preciously describing real time traffic pattern in urban road network, dynamic network loading(DNL) models able to simulate traffic behavior are required. A number of different methods are available, including macroscopic, microscopic dynamic network models, as well as analytical model. Equivalency minimization problem and Variation inequality problem are the analytical models, which include explicit mathematical travel cost function for describing traffic behaviors on the network. While microscopic simulation models move vehicles according to behavioral car-following and cell-transmission. However, DNL models embedding such travel time function have some limitations ; analytical model has lacking of describing traffic characteristics such as relations between flow and speed, between speed and density Microscopic simulation models are the most detailed and realistic, but they are difficult to calibrate and may not be the most practical tools for large-scale networks. To cope with such problems, this paper develops a new DNL model appropriate for dynamic traffic assignment(DTA), The model is combined with vertical queue model representing vehicles as vertical queues at the end of links. In order to compare and to assess the model, we use a contrived example network. From the numerical results, we found that the DNL model presented in the paper were able to describe traffic characteristics with reasonable amount of computing time. The model also showed good relationship between travel time and traffic flow and expressed the feature of backward turn at near capacity.