• Title/Summary/Keyword: 교정용 브라켓 결합강도

Search Result 37, Processing Time 0.028 seconds

Shear bond strength of orthodontic adhesive to amalgam surface using light-cured resin (광중합형 레진으로 아말감 면에 브라켓 접착 시 전단결합강도)

  • Cho, Ji-Young;Lee, Dong-Yul;Lim, Yong-Kyu
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.443-450
    • /
    • 2005
  • This study was performed to compare the shear bond strength of orthodontic adhesive to amalgam according to different light sources (halogen-based light and light emitting diode (LED)) and amalgam surface treatments. Ninety extracted human premolars were randomly divided into 6 groups (4 experimental and 2 control groups) of 15 by light sources and surface treatments. Orthodontic brackets were bonded and shear bond strength was measured with an Instron universal testing machine. The findings were as follows: The bond strength of adhesive to amalgam surface was 3-5.5 MPa which was lower than that of acid-etched enamel (19 MPa) control. In the sandblasted amalgam surface, the shear bond strength of the halogen light group was higher than that of the LED group (p < 0.05) but. in the non-treated amalgam surface. there was no significant difference in the shear bond strength according to the light sources (p> 0.05). Within the same light source. sandblasting had no significant effect on the shear bond strength of the adhesive bonded to amalgam surface (p > 0.05). There was no significant difference in shear bond strength according to the light sources in acid-etched enamel control groups. This results suggest that there can be a limit in using light curing adhesives when brackets are bonded to an amalgam surface. Additional clinical studies are necessary before routine use of halogen light and LED light curing units can be recommended in bonding brackets to an amalgam surface.

THE EFFECTS OF SURFACE TREATMENTS ON SHEAR BOND STRENGTHS OF LIGHT-CURED AND CHEMICALLY CURED GLASS IONOMER CEMENTS TO ENAMEL (법랑질의 표면처리가 광중합형 및 화학중합형 글래스아이오노머 시멘트의 전단결합강도에 미치는 영향)

  • Shin, Kang-Seob;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.25 no.2 s.49
    • /
    • pp.223-233
    • /
    • 1995
  • The purpose of this study was to evaluate the effects of surface conditioning with $10\%$ polyacrylic acid, etching with $38\%$ phosphoric acid, and polishing with a slurry of pumice on shear bond strengths of light-cured glass ionomer cement, chemically cured glass ionomer cement, and a composite resin to enamel, and to observe the failure patterns of bracket bondings. Shear bond strengths of glass ionomer cements were compared with that of a composite resin. Metal brackets were bonded on the extracted human bicuspids after enamel surface treatments, and samples were immersed in the $37^{\circ}C$ distilled water bath, and shear bond strengths of glass ionomer cements and a composite resin were measured on the Instron machine after 24hrs passed, and the deboned samples were measured in respect of adhesive remnant index. Scanning electron micrographs were taken of enamel surfaces after various treatments. The data were evaluated and tested by ANOVA and Duncan's multiple range test, and those results were as follows. 1. Shear bond strength of light-cured glass ionomer cement showed statistically higher than that of chemically cured glass ionomer cement. 2. Shear bond strengths of light-cured and chemically cured glass ionomer cements to enamel treated with $10\%$ polyacrylic acid and $38\%$ phosphoric acid showed statistically higher than those with a slurry of pumice. 3. According to scanning electron micrographs, enamel surface conditioned with $10\%$ polyacrylic acid is slightly etched and cleaned, that etched with $38\%$ phosphoric acid is severely etched, and that polished with a slurry of pumice is irregulary scretched and not completely cleaned. 4. After debonding, light-cured glass ionomer cement to enamel treated with $10\%$ polyacrylic acid showed less residual materials on the enamel solace than composite resin to enamel etched with $38\%$ phosphoric acid. 5. There was no significant difference in the shear bond strength of light-cured glass ionomer cement to enamel treated with $10\%$ polyacrylic acid and that of composite resin to enamel etched with $38\%$ Phosphoric acid.

  • PDF

Change in shear bond strength of orthodontic brackets using self-etching primer according to adhesive types and saliva contamination (Self-etching primer를 사용하여 교정용 브라켓 접착 시 접착제와 타액오염에 따른 전단결합강도 변화)

  • Nam, Eun-Hye;Yoon, Young-Ah;Kim, Il-Kyu
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.433-442
    • /
    • 2005
  • The purpose of this study was to evaluate and compare the shear bond strength of orthodontic brackets depending on the variety of adhesives and whether saliva exists, by using self-etching primer (SEP). Groups were divided according to the type of adhesive into resin adhesive (Trans bond XT) and resin-modified glass ionomer cement (Fuji Ortho LC). One group of resin adhesive used XT primer after etching with 37% phosphoric acid, and the other group used self-etching primer. One group of resin-modified glass ionomer cement only used etching for bonding, and the other group used SEP. Each of the groups were also classified by whether saliva was contaminated or not. and then the shear bond strength was measured. The results showed that when using resin adhesive, the shear bond strength of SEP was lower than the XT primer. In the resin-modified glass ionomer cement groups, the shear bond strength which depends on the priming method, did not have a meaningful difference statistically When saliva was contaminated, the group which used SEP, regardless of the adhesive variety, had a greater shear bond strength than the normal priming group. From these results, SEP showed a shear bond strength that is possible to be used clinically, regardless of the adhesive variety. It can especially be clinically useful to use SEP to bond brackets even on tooth surfaces contaminated with saliva, because it offers the appropriate bonding strength as well as shorter treatment time and easy application.

Shear bond strength of orthodontic bracket with hydrophilic primer (친수성 프라이머를 이용한 교정용 브라켓 접착시의 전단결합강도에 관한 연구)

  • Park, Chul-Wan;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.32 no.4 s.93
    • /
    • pp.293-300
    • /
    • 2002
  • The purpose of this study was to evaluate the clinical effectiveness of hydrophilic primer, which claim to retain adequate bond strength on moistened enamel resulting from moisture or saliva contamination, by comparing the shear bond strength and adhesive failure patterns of brackets bonded using hydrophilic primer and conventional hydrophobic primer. Brackets were bonded to human premolars embedded in metal cylinders utilizing light cured adhesive, primed with either a hydrophilic primer(Transbond fm primer) or a conventional hydrophobic primer(Transbond XT primer). Each sample was exposed to varying degrees of artificial saliva contamination during the priming process. The shear bond strength was measured using a universal testing machine, and the adhesive failure patterns after debonding were visually examined by strereomicroscope and assessed using the adhesive remnant index(ARI). The results were as follows 1. In dry conditions, no significant differences in shear bond strength between Transbond W and Transbond XT primers were found. 2. Transbond MIP primer exhibited a significantly higher shear bond strength than Transbond XT primer in saliva-contaminated conditions, regardless of the degree of contamination. 3. When contaminated with one coat of saliva, Transbond MIP primer did not exhibit significant differences in shear bond strength compared to the dry condition. When contaminated with two coats of saliva, Transbond MIP primer exhibited a singnificantly lower shear bond strength compared to the dry condition. 4. The adhesive remnant index of the adhesive failure pattern had a tendency to decrease, as the degree of saliva contamination increased. Bracket-adhesive interface failure was observed in more than half of the saliva contaminated samples utilizing Transbond MIP primer, whereas the bond failure sites of the Transbond XT primer samples occurred almost exclusively at the adhesive-enamel interface in saliva-contaminated conditions. The results of this study suggest that in cases where moisture control is difficult, Transbond MIP primer is an effective alternative to conventional hydrophobic primers.

A study on the shear bond strengths of orthodontic brackets according to surface treatments and sizes of amalgam restorations (아말감 충전물의 크기와 표면 처리방법에 따른 교정용 브라켓의 전단접착강도에 대한 연구)

  • Kim, Hyeun-Hee;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.31 no.3 s.86
    • /
    • pp.381-391
    • /
    • 2001
  • In orthodontic patients, frequently, amalgam restorations are present on the buccal surface of molars. The ability to successfully bond orthodontic brackets and buccal tubes to amalgam restorations would therefore be of clinical value. But the bond strength to total amalgam surface is probably not critical in most instances. Because there is usually a considerable amount of sound enamel surrounding a buccal amalgam filling. The purpose of this study was to evaluate the bond strengths of orthodontic brackets according to surface treatments and size of amalgam restorations. Eighty tooth specimen were assigned to four groups according to amalgam size-1.5mm, 2.0mm, 2.5mm, 3.0mm diameter-and then divided into two groups : one half was sandblasting group the other half was no sandblasting group. After Bracket bonding, shear bond strength for each specimen was determined and bond failure patterns was evaluated. 1. Shear bond strength of amalgam size 1.5mm group was significantly higher than that of the other groups. (p<0.05) 2. There was no significant difference in the bond strength produced by sandblasting. (p<0.05) 3. Shear bond strength of G and H group of which amalgam restoration ratio to the bracket base sizes were $61\%$ were significantly decreased $50-60\% level of that of control group. (p<0.05) 4. There was positive correlation between sandblasting and mARI. (p<0.05) The results of the present study indicate that it may be feasible to bond orthodontic bracket clinically successfully to amalgam restoration with conventional orthodontic resin when its size is less than $50\%$ of that of bracket base.

  • PDF

A COMPARATIVE STUDY OF THE SHEAR BOND STRENGTH AND ADHESIVE FAILURE PATTERN OF METAL BRACKETS BONDED ON NATURAL TEETH AND PORCELAIN TEETH (자연 치관과 포세린 치관상에서 교정용 브라켓 부착시 전단 결합 강도와 파절 양상에 관한 비교 연구)

  • Lee, Hyun-Sun;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.2
    • /
    • pp.195-204
    • /
    • 2008
  • Orthodontic brackets often need to be bonded to porcelain such as porcelain fused to metal crowns and porcelain jacket crowns. The purpose of this study was to evaluate the clinical usability of direct bonding system on porcelain teeth by measuring shear bond strength according to various conditions and observing adhesive failure patterns. The specimens, 20 maxillary premolars and 80 porcelain teeth that were produced by duplication of the labial surface of a maxillary first premolar were used and randomly divided into four groups of twenty teeth each. The 5 different preparation procedures tested: (1) application of 37% phosphoric acid on natural teeth, (2) sandblasting on porcelain surfaces, (3) sandblasting and application of 9.6% hydrofluoric acid on porcelain surfaces, (4) sandblasting and application of silane on porcelain surface, (5) sandblasting and application of 9.6% hydrofluoric acid and silane on porcelain surfaces. The metal brackets were bonded with Transbond $XT^{(R)}$ bonding material. The shear bond strength was tested by the micro universal testing machine(Kyung-Sung, Korea) and the amount of residual adhesive on the tooth surface after debonding was examined by stereoscope and assessed with an adhesive remnant index. The results of this study suggest that the direct bonding system on porcelain teeth with sandblasting, HF and porcelain primer is clinically useful.

  • PDF

A comparative study on bond strength and adhesive failure pattern in bracket bonding with self-etching primer (Self-etching Primer를 이용한 교정용 브라켓 부착시 전단결합강도와 파절양상에 관한 비교연구)

  • Kim, You-Kyoung;Lee, Jin-Woo;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.34 no.4 s.105
    • /
    • pp.325-332
    • /
    • 2004
  • A self-etching primer that combines the etchant and primer in one chemical compound saves time and should be mote cost-effective to the clinician and patient. The purpose of this study was to evaluate the clinical effectiveness of a self-etching primer by measuring shear bond strengths according to various conditions and observing adhesive failure patterns. For this Investigation, 120 upper and lower premolars extracted for orthodontic purposes were used and randomly divided into six groups of twenty teeth each. Human premolars were embedded in a metal cylinder with orthodontic resin. Metal brackets and ceramic brackets were bonded with XT primer and self-etching primer by means of XT adhesive. Upon curing, plasma arc light and visible light were used. After bonding, the shear bond strength was tested by Instron universal testing machine, and the amount of residual adhesive that remained on the tooth after debonding was measured by stereoscope and assessed with an adhesive remnant index. The results were as fellows: 1. When brackets were bonded, if other conditions remained the same, there was no significant difference in shear bond strength due to the type of primer - either self-etching primer or XT primer. 2. When metal brackets were bonded, there was no significant difference in shear bond strength according to the source of light - plasma arc light or visible light - and type of primer. 3. There was a very significant difference in shear bond strength according to the type of brackets - metal or ceramic brackets. The shear bond strength of ceramic brackets was stronger than metal brackets. 4. When the adhesive failure patterns of metal brackets bonded with self-etching primer were observed by using the adhesive remnant index, the bond failure of the metal bracket occurred more frequently at the bracket-adhesive. The failure of the ceramic bracket, however, occurred more frequently at the enamel-adhesive interface. The adhesive failure patterns of metal brackets bonded with XT primer observed the same patterns. The above results suggest that self-etching primer can be clinically useful for bonding the brackets without fear of a decrease in shear bond strength.

Effect of Blood Decontamination on Orthodontic Bracket Bonding (혈액 오염 처리 과정이 교정용 브라켓 접착에 미치는 영향)

  • Lee, Jaehee;Shin, Jisun;Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.3
    • /
    • pp.341-349
    • /
    • 2017
  • Blood decontamination is an important factor in success of the orthodontic bracket. The purpose of this study is to evaluate the shear bond strength affected by blood decontamination. The shear bond strength was measured on blood decontamination before and after primer photopolymerization. And the adhesive remnants type and surface patterns was evaluated under scanning electron microscopy. A total of 50 human premolars were prepared. Group I was attached using conventional resin-acid etching method as control group. Group II and III were blood contaminated before curing primer and groups IV and V were blood contaminated after curing primer. Group II and IV were treated only with cotton pellet and Groups III and V were treated with cotton pellet after water washing. The mean shear bond strengths were in the order of groups I, V, III, II, and IV. In scanning electron micrographs group III and V showed more uniform surface than group II and IV. The ARI was significantly different between the control group and the experimental groups (p <0.05).

THE EFFECT OF LIGHT CURED GLASS IONOMER CEMENT ON THE SHEAR BOND STRENGTH OF ORTHODONTIC BRACKETS (광중합형 글래스 아이오노머 시멘트 교정용 브라켓의 전단결합강도에 미치는 영향)

  • Kim, Cheol;Yoon, Young-Jooh;Kim, Kwng-Won
    • The korean journal of orthodontics
    • /
    • v.27 no.2
    • /
    • pp.327-334
    • /
    • 1997
  • The purpose of this study was to evaluate clinical applicability of light cured glass ionomer cement as a othodontic adhesive. The metal brackets and plastic brackets were bonded with light cured glass ionomer cement(Fuji Ortho $LS^{(R)}$) after polishing with a slurry of pumice, surface conditioning with 10% polyacrylic acid and chemically cured resin(Mono-$Lok2^{(R)}$) after acid etching with 38% phosphoric acid on the extracted human bicuspids. The shear bond strength was tested with a universal testing machine(HGS-100A, Shimadzu Co., Japan) after storage in normal saline at $37^{\circ}C$ or 24 hours and 48 hours. The results were as follows: 1. The shear bond strength of light cured glass ionomer cement group polished with a slurry of pumice was significantly lower than that of chemically cured resin group(P<0.01). 2. The shear bond strength of light cured glass ionomer cement group conditioned with 10% polyacrylic acid was significantly lower than that of chemically cured resin group(P<0.01). 3. The shear bond strength of light cued glass ionorner cement group conditioned with 10% polyacrylic acid was slightly higher than that of light cured glass ionomer cement group polished with a slurry of pumice, but there was no significant difference(P>0.05). 4. There was no significant difference between metal bracket group and plastic bracket group irrelevant off enamel conditioning(P>005). In summary, although the shear bond strength of light cured glass lionomer cement was lower than that of chemically cured resin, it night be clinically applicable.

  • PDF

A Change of Shear Bond Strength of Orthodontic Resin Adhesives under Water Immersion (침수후 시간에 따른 교정용 레진접착제의 전단결합강도 변화)

  • Lee, Je-Jun;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.28 no.5 s.70
    • /
    • pp.783-789
    • /
    • 1998
  • The purpose of this study was to evaluate the changes of shear bond strengths and failure patterns in orthodontic resin adhesives according to the water immersion time. Metal brackets were bonded to the specimens involving the premolars with chemical-cured($Concise^{\circledR}$) and light-cured($Transbond^{\circledR}$) adhesives. The shear bond strength was measured on universal testing machine and the failure patterns were assessed with the adhesive remnant index(ARI) after storage in distilled water at $37^{\circ}C$ for 1 day, 1 week and 1, 3, and 6 months, respectively. The results were as follows. 1. The shear bond strengths at the 6 month in both Concise and Transbond were significantly higher than those at the 1 day, 1 week and 1 month(p<0.05). There were positive correlations between shear bond strength and water immersion time in both Concise and Transbond(P<0.01). 2. There were no significant differences in shear bond strength between Concise and Transbond. 3. The brackets were failed primarily at the bracket base-adhesive interface and there was no significant difference in the incidence of ARI scores according to the water immersion time.

  • PDF