• Title/Summary/Keyword: 교량 슬래브

Search Result 161, Processing Time 0.02 seconds

Study of the Temperature Difference between the Top and Bottom Web of Steel Box Girder without Concrete Slab by using Gauge Measurement (계측에 의한 콘크리트 슬래브가 없는 강박스거더의 상하 온도차 연구)

  • Lee, Seong-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7350-7356
    • /
    • 2014
  • To study the reasonable design thermal loads, a steel box girder bridge specimen, which has no concrete slab, was manufactured with real size dimensions. The temperature data was obtained at the web and diaphragm using thermo gauges that were attached according to height. In the hottest day, the temperature differences between the top and bottom of the bridge model were calculated. The temperatures in the actual bridge were measured and the temperature of the bridge specimen was compared. The temperature gradient models were proposed in both the web and the diaphragm. The proposed models showed a correlation of approximately 95.8% compared to the Euro code. This study can provide basis data for temperature-load design in the nation.

Analysis of the Internal Forces of the Rail Supports for the Serviceability of Concrete Slab Track Bridge (콘크리트 슬래브 궤도 교량의 사용성 검토를 위한 레일 지지점에서의 작용력 해석)

  • Choi, Jun-Hyeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1303-1313
    • /
    • 2013
  • In this study, the reference values for the internal forces of the rail supports caused by a wheel load, a unit vertical displacement, a unit end rotation in examination of the serviceability of concrete slab track bridge were obtained. In analysis, the analysis models of which the rail was continuously and discretely supported by elastic springs were used. The internal forces of the rail supports from the analysis were compared with the results provided in the DS 804 regulations and agreed with well. In addition, the effects of the space between the rail supports and the stiffness of fastener on the internal forces of the rail supports were investigated.

Behavior of Concrete Bridge Deck Using Hybrid Reinforcement System (Hybrid Reinforcement System을 이용한 콘크리트 교량상판 슬래브의 거동)

  • Park Sang-Yeol;Cho Keun-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.451-458
    • /
    • 2004
  • This study describes the basic concept and the applicability of Hybrid Reinforcement System using conventional steel reinforcing bars and Fiber Reinforced Polymer bars. The concrete bridge decks are assumed to be supported by beams and reinforced with two layers of reinforcing bars. In concrete bridge deck using HRS, the top tensile force for negative moment zone on beam supports is assumed to be resisted by FRP reinforcing bars, and the bottom tensile force for positive moment zone in the middle of hem supports is assumed to be resisted by conventional steel reinforcing bars, respectively. The FRP reinforcing bars are non-corrosive. Thus, the steel reinforcement is as far away as possible from the top surface of the deck and protected from intrusion of corrosive agent. HRS concrete bridge deck has sufficient ductility at ultimate state as the following reasons; 1) FRP bars have lower elastic modulus and higher ultimate strain than steel re-bars have, 2) FRP bars have lower ultimate strain if provided higher reinforcement ratio, 3) ultimate strain of FRP bars can be reduced if FRP bars are unbonded. Test results showed that FRP and HRS concrete slabs are not failed by FRP bar rupture, but failed by concrete compression in the range of ordinary reinforcement ratio. Therefore, in continuous concrete bridge deck using HRS, steel reinforcing bars for positive moment yield and form plastic hinge first and compressive concrete fail in the bottom of supports or in the top of the middle of supports last. Thus, bridge deck consumes significant inelastic strain energy before its failure.

Damage-Spread Analysis of Heterogeneous Damage with Crack Degradation Model of Deck in RC Slab Bridges (RC 슬래브교의 바닥판 균열 열화모델에 따른 이종손상 확산 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Kim, Jae-Hwan;Part, Ki-Tae;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.93-101
    • /
    • 2022
  • RC Slab bridges in Korea account for more than 70% of the total bridges for more than 20 years of service. As the number of aging structures increases, the importance of safety diagnosis and maintenance of structures increases. For highway bridges, cracks are a main cause of deck deterioration, which is very closely related to the decrease in bridge durability and service life. In addition, the damage rate of expansion joints and bearings accounts for approximately 73% higher than that of major members. Therefore, this study defined damage scenarios combined with devices damages and deck deterioration. The stress distribution and maximum stress on the deck were then evaluated using design vehicle load and daily temperature gradient for single and combined damage scenarios. Furthermore, this study performed damage-spread analysis and predicted condition ratings according to a deck deterioration model generated from the inspection and diagnosis history data of cracks. The heterogeneous damages combined with the member damages of expansion joints and bearings increased the rate of crack area and damage spread, which accelerated the time to reach the condition rating of C. Therefore, damage to bridge members requires proper and prompt repair and replacement, and otherwise it can cause the damage to bridge deck and the spread of the damage.

The Behaviour of Track/Railway Bridge according to Pad Stiffness of Fastener System on Concrete Slab Track (콘크리트슬래브궤도 체결장치의 패드강성에 따른 궤도/교량의 거동 분석)

  • Lee, Jun-Ho;Sung, Deok-Yong;Park, Yong-Gul;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1628-1636
    • /
    • 2008
  • Construction of concrete slab track is trending to increase gradually in national and international for reduction in track maintenance cost and secure of ride comfort. But elastic pad becomes superannuated due to repeated train operation. After all, it brings change of pad stiffness and it could directly act on track and bridge as load transmission and impact force. In this study, we carried out laboratory test changing pad stiffness after making a model of 15m bridge and laying concrete slab track. Also, we carried out static and dynamic behaviors test(stress, natural frequency, damping ratio, vibrational acceleration, deflection) of bridge and track and experimentally analyzed them by change of elastic pad stiffness on rail fastener.

  • PDF

Safety Evaluation through Field Load Test of RC Slab Bridge (RC 슬래브 교량의 현장재하시험을 통한 안전성 평가)

  • Cho, Han-Min
    • Journal of Urban Science
    • /
    • v.11 no.1
    • /
    • pp.9-13
    • /
    • 2022
  • Currently, RC slab bridges in use in Korea account for most of the total bridges, and bridges with a service life of 20 years or more account for about 75%. However, most of these RC slab bridges have a span of less than 20m and are not included in the first and second types of facilities, so maintenance is very neglected. Therefore, in this study, field load test is performed on an aged RC slab bridge, and the performance evaluation is performed based on the structural response results (deflection, impact coefficient, natural frequency, etc.) of the bridge obtained through field load test. In addition, the performance evaluation results obtained through the load test are intended to be used as basic data for the damage evaluation process of the bridge currently under development.

Flexural Behaviors of High Performance Hollow Core Slabs with Upper Strands (상부강선을 갖는 고성능 중공슬래브의 휨거동)

  • 김인규;박현석;유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.156-163
    • /
    • 2002
  • Hollow core slabs generally have not been used for a bridge or a parking slab in Korea. In this study, high performance hollow core slabs, which have been the most thick one in domestic are re-designed and examined for practical use. Flexural tests were performed on four 315mm deep hollow core slabs to investigate adaptability for high vehicle live loadings and composite action with topping concrete. The precast slabs were pre-tensioned with ten strands of 1/2 inch diameter at the lower of slab and four strands of 1/2 inch diameter at the upper of slab, and cast with 80 mm deep topping concrete. Tested hollow core slabs showed ductile failure behaviors which were conformed to the current Ultimate Strength Design Method for a span of 10m up to the live load of 1,000 kgf/㎡. The rectangular md round shear cotters which were used for the composite action between precast and topping concrete, developed sufficient strengths because cracking, even micro had not been developed at the end of slabs up to the pure flexural tensile failure.

An Experimental Study for Structural Safety Evaluation of PSC Box Girder Bridge with FRP Struts (FRP 스트럿을 가진 PSC 박스거더교의 구조안전성 평가를 위한 실험 연구)

  • Song, Jae-Joon;Park, Jong-Hwa;Park, Kyung-Hoon;Jo, Byung-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.205-213
    • /
    • 2008
  • The structure of PSC box girder with FRP strut has a form of supporting the cantilever part in the widened upper slab by modifying the existing PSC box girder efficiently, and it is able to build an economical and aesthetically pleasing bridge as it reduces the size of the lower structure by reducing the self-weight of the upper structure. In this research, loading test of PSC Box Girder using full-scale mock-up was conducted and FEM analysis was performed. By comparing results, structural safety of the FRP strut and the upper slab following application of the strut in the PSC Box Girder Bridge were evaluated.

A Case Study on the Structural Safety Assessment of Prestressed Concrete Beam Bridge (PSC 빔교의 구조안전성 검토 사례 연구)

  • 은충기;채원규;손영현;홍성욱
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.11a
    • /
    • pp.47-52
    • /
    • 2002
  • 본 연구에서는 PSC 빔교의 안전성 검토에 대한 기초자료를 제공하기 위하여, PSC 빔교의 구조안전성 검토 과정 및 방법에 대한 사례를 연구하였다. PSC 빔교의 구조안전성 평가를 위하여 대상 PSC 교량을 선정하여 단면특성 계산, 하중계산, 구조체에 대한 모델링, 하중조합 등의 일련의 구조해석을 수행하였으며, 설계하중 작용시 구조물의 각 부재에 발생되는 최대 단면력을 산출하였다. 본 연구에서는 최종적으로 이들 구조해석 결과를 이용하여 PSC 빔교의 슬래브 및 슬래브와 PSC 빔의 합성단면에 대한 구조안전성을 강도설계법으로 검토하였다.

  • PDF