• Title/Summary/Keyword: 교량법

Search Result 379, Processing Time 0.025 seconds

The Research on the Curve of Maintenance Cost from Newly Constructed Steel Box Girder Bridge (최근 가설된 강상자형 교량의 보수.보강 공사비곡선 추정에 관한 연구)

  • Kim, Young-Woo;Shin, Yung-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.553-556
    • /
    • 2009
  • 최근 우리나라의 건설 분야에서는 생애주기비용(Life Cycle Cost;이하 LCC)/가치공학(Value Engineering; 이하 VE)을 적용한 구조물 설계가 실시되고 있다. 이는, 건설교통부에서 공공건설사업의 효율성을 제고하기 위하여 실시하고 있으며, 대통령령에 따라 "건설기술관리법시행령"을 제정하여 공공사업분 수행 절차와 기준을 법제화 하였으며 이후 시행령 38조 13의 "설계의 경제성등 검토" 실시를 의무화하는 시행지침을 작성하여 수행하고 있다. 이러한, LCC/VE의 검토에서 보수 보강 공사비 산정은 유지보수공사 프로파일링을 통한 보수 보강 시기를 산정(건설교통부, 2003)하여 교량 구성요소별 보수 교체 주기를 산정(건설교통부, 2001)에서 제시한 기간을 적용하여 LCC/VE를 평가하고 있다. 하지만, 이러한 보수 보강 공사비의 적용은 일괄적인 적용이며, 예전 국내의 교량 건설기술이 현재와 같이 발전된 상태에서의 현황이 아니므로 본 연구에서는 현재 고속국도에 완공되어 운용중인 교량 구조물을 시설물의 안전관리에 관한 특별법 시행령(2008)에 따른 "시설물의 안전점검 및 정밀안전진단 지침"에 의한 교량의 초기점검, 정밀점검 및 정밀안전진단 자료를 조사 분석하여 보수 보강 공사비 곡선을 추정하려 한다.

  • PDF

A Study on Statistical Analysis of Load Carrying Capacity of Steel Bridges (강도로교의 내하력 통계분석과 해석에 관한 연구)

  • Chang, Dong Il;Lee, Hee Hyun;Eom, Yeong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 1988
  • Fatigue phenomena usually occur in the structures such as bridges subjected to repeated loading with increasing service year. Especially, applied stresses happen to approach to design values due to rapid increase of traffic volume and vehicle weight, so it gives serious effects to the stability of bridges. Therefore, in this paper, the data for load carrying capacity of bridges obtained from field tests were analysed statistically to investigate bridge behaviour and a basic approach to estimate the impact factor was proposed after a comparison war made between field-test data and the calculated values obtained by using matrix structural analysis method.

  • PDF

A Study on the Computation of Overload Probability Based on Bridge Load Rating Factor (교량내하력 값에 기초한 초과하중 확률 계산에 관한 연구)

  • Yang, Seung-Ie;Kim, Jin-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.125-134
    • /
    • 2003
  • In order to rate current bridge load carrying capacity, typically two methods are used. These are Allowable Stress Rating (ASR) and Load Factor Rating (LFR). Using the rating factors, there are many attempts to make a connection between rating factors and probability concept. The main purpose of the paper is computing the probability of overload using rating factors and probability concept. In this paper, the load rating methods are briefly explained, and the probability concept is connected to rating factors by using live load from Weigh-in-Motion (WIM). Based on the live load model and rati ng factor, the computation procedure of the probability of overload is explained.

LRFD Design and Reliability Level Estimation of a Steel Closed-Box Girder Bridge (폐단면 강박스거더교의 LRFD 설계와 신뢰성수준 평가)

  • Huh, Jung-Won;Yun, Dong-Geon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.217-225
    • /
    • 2010
  • Most of the steel bridges in Korea are being currently designed by the allowable stress design method that uses the conventional deterministic factors of safety. However the limit state design based on the concept of probability, statistics and reliability engineering is becoming very popular as a global standard deign method, leading the rational and economic bridge design. As part of the fundamental research to establish the load and resistance factor design(LRFD) of steel bridges considering domestic environmental conditions and regional characteristics, an experimental design is conducted by applying AASHTO-LRFD specification especially to a steel closed-box girder, which occupies relatively a large portion of steel bridges in Korea. Throughout the experimental design according to various sectional changes, some of the issues to be considered in the LRFD design of a composite steel closed-box girder bridge are examined. In this process, an Excel-based design verification program is developed for easy computation and prevention of errors. Quantitative reliability levels of the bridge sections designed by LRFD are also estimated using a reliability analysis method, and compared with the target reliability indexes applied in the LRFD design to verify the validity of the procedure and methodology used in this study.

Simple Method of Vibration Analysis of Three Span Continuous Composite Slab Bridges with Elastic Intermediate Supports (탄성지지된 3경간 연속 복합슬래브교량의 간단한 진동해석)

  • Han, Bong Koo;Kim, Duk Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.317-324
    • /
    • 2005
  • The specially orthotropic plate theory is used to analyse three-span continuous composite slab bridges with elastic intermediate supports. A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions, was developed and the result of application of this method to the three-span continuous composite slab bridges with elastic intermediate supports is presented. This type of bridge represents either concrete or sandwich type three-span bridge on polymeric supports for passive control or on actuators for active control. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. The finite difference method is used for this purpose in this paper. The influence of flexural stiffnesses and the modulus of the foundation are studied.

Elasto-Plastic Analysis for Flexural Behavior of Externally Prestressed Composite Bridges (외부 프리스트레스트 강합성 교량의 탄소성 휨 거동해석)

  • Chung, Seung In;Ryu, Hyung Keun;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.59-68
    • /
    • 2003
  • Recent application researches on external pre-stressing method of composite structures have been conducted to explore its advantages. An external pre-stress could improve mechanical behavior and maintenance, and is economically efficient. In this paper, the Incremental Deformation Method (IDM) was proposed to analyze the elasto-plastic flexural behavior of externally pre-stressed composite bridge with consideration for the material's nonlinearity. This method was verified with experimental results.

Seismic Performance Evaluation of Circular RC Bridge Piers with Shear-Flexure Behavior (휨-전단 복합 거동을 보이는 RC 원형교각의 내진성능 평가)

  • 김병석;김영진;곽임종;조창백;조정래
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.29-36
    • /
    • 2001
  • Same as-built drawings in national roadway bridges in Korea were examined. As a result, many bridge piers were found whose aspect ratios are in the vicinity of 2.5. These columns are expected to do shear-flexure behaviour, but the previous research works considered flexure behaviour columns only. In the study, therefore, a shear-flexure behaviour column was selected as the model pier, and quasi static test on the full and 1/2 scale models was carried out. From the test results, the scale effect on the seismic performance evaluation was analyzed, and the seismic performance of the model bridge pier without seismic details was evaluated by the capacity spectrum method.

  • PDF

Pounding Characteristics of a Bridge Superstructure on Rubber Bearings (교량 상부구조물의 탄성받침 설치에 따른 충돌특성 분석)

  • Choi, Hyoung-Suk;Kim, Jung-Woo;Gong, Yeong-I;Cheung, Jin-Hwan;Kim, In-Tae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.13-21
    • /
    • 2011
  • Seismic structure pounding between adjacent superstructures may induce the destruction of pier and bridge superstructures and cause local damage that leads to the collapse of the whole bridge system. The pounding problem is related to the expansion of joints, gap distance and seismic response of the abutments. In this research, methods of the contact element approach, the linear spring model, the Kelvin-Voigt model and the Hertz model were studied to analyse the pounding characteristics. The shaking table test for a model specimen such as a bridge superstructure with elastomeric bearings was performed to evaluate the contact element approach methods. Relationships between the time history response from the numerical analysis results and the measured response from the shaking table test are compared. The experimental results were not well matched with the numerical analysis results using the existing pounding stiffness models. Therefore, in this study, coefficients are proposed to calculate the appropriate pounding stiffness ratio.

An Experimental Study for Estimation of Effective Temperature for Design in Steel Box Girder Bridge (강박스거더교의 설계 유효온도 산정을 위한 실험적 연구)

  • Lee, Seong Haeng;Shin, Hyo Kyoung;Kim, Kyoung Nam;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.449-458
    • /
    • 2016
  • The temperature data were measured for two years in a bridge specimen and the bridge in service nearby in order to calculate the effective temperature for thermal loads in steel box girder bridge. The maximum and minimum effective temperatures were calculated in the bridge specimen and the bridge according to air temperature in 2014, 2015 and 2years. The effective temperatures calculated in this study were compared the Euro code and the Highway Bridge Design Criteria. The coefficients of determination in the maximum effective temperature and the Euro code for 2 year were calculated from R = 0.927, R = 0.894 in a bridge specimen and the bridge respectively. Those of minimum temperature and the Euro code were analyzed from R = 0.992, R = 0.813 in two bridge respectively. Also, the results were evaluated as being very similar, or slightly increased as compared with the maximum temperature of the Korean Highway Bridge Design Code(Limit State Design).