• 제목/요약/키워드: 교량기초

Search Result 455, Processing Time 0.027 seconds

A Study on the Present Status and Future Directions of Maritime Safety Audit (해상교통안전진단제도의 운영현황과 향후 정책방향에 관한 연구)

  • Cho, Ik-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.399-405
    • /
    • 2011
  • Recently, the navigation risk is increasing significantly with growth of marine traffic volume and construction of marine facilities, water bridges, port development and marine wind farm etc. To reduce this kinds of risk, Ministry of Land, Transport and Maritime Affairs enacted a new law called MSA(Maritime Safety Audit) as a comprehensive maritime traffic safety management scheme in order to ensure safety improvements from the early planning stage to post managing of the development which affect the maritime traffic environment. MSA as a tool for improving maritime traffic safety is a formal safety assessment in the existing or future ship's fairway by an independent audit team. It examines the potential hazards of maritime traffic safety, if necessary, and is to ensure the implementation of appropriate safety measures. The object of this paper is to comprehensively evaluate the achievements and implementation problems of MSA about the 2 years, to define the fundamental problems of MSA by conceptualizing and analyzing MSA limits. MSA requires further examination about the introduction of screening and scoping in order to increase the efficiency and objectivity. It will be required the measures concerning policies directions as a tool for planning process for project owner. It will lead to right understanding concerning audit scheme and used in various ways such as amendments to related law.

Embedded EM Sensor for Tensile Force Estimation of PS tendon of PSC Girder (PS 긴장재 긴장력 계측을 위한 PSC 거더 내부 매립용 EM 센서)

  • Park, Jooyoung;Kim, Junkyeong;Zhang, Aoqi;Lee, Hwanwoo;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.691-697
    • /
    • 2015
  • In this paper, an embedded EM sensor was researched to estimate prestressing force of PS tendon in PSC girder. Recent methodologies for managing prestressing force loss were staying on verifying a applying prestressing force under construction, namely the loss management can not be controlled after construction. To estimate the tensile force of PS tendon during lifetime of PSC girder, this research proposed a bobbin-type embedded EM sensor that can be embedded in PSC girder is designed and fabricated considering the shape properties of anchorage zone and sheath. To verify the proposed sensor, a small PSC girder test was performed. The embedded EM sensor was connected to a sheath and anchor block, and the concrete was poured. After curing, the change of the permeability of PS tendon under tensile forces of 200, 710, 1070, 1300kN was measured using embedded EM sensor. The permeability of PS tendon had decreased according to the increment of applied tensile force. Also it is confirmed that the change of permeability due to applied tensile force could resolve the applied tensile force values. As a result, proposed embedded EM sensor could be embed into the PSC girder and it could be used to estimate the tensile force variation during lifetime of PSC girder.

A Proposal for Improved Safety Assessment Procedure of Corrugated Steel Plate Structures Using Measured Displacements (파형강판 구조물의 내공변위를 활용한 개선된 안전도 평가 절차 제안)

  • Jeon, Se-Jin;Lee, Byeong-Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.13-24
    • /
    • 2020
  • A systematic approach to assess the safety of corrugated steel plate structures has not been established yet. Therefore, an improved safety assessment procedure was proposed in this study by considering the characteristics of corrugated steel plate structures in which the dead load of backfill soil is dominant and the live load effect is minimized. The proposed procedure can consider the combined effect of axial force and bending moment on the safety, based on the Soil-Culvert Interaction (SCI) method, and can differentiate the maintenance scheme according to the calculated plasticity index. There is also an advantage in enhancing the accuracy of assessment, utilizing the measured displacements. Furthermore, improved methods were proposed by discussing various ways for reasonably improving the proposed assessment procedure. The safety of an actual structure and a full-scale test specimen was assessed by applying the proposed procedure. The conventional assessment procedure significantly overestimated the load-carrying capacity, whereas the proposed procedure resulted in a reasonable level of safety. Therefore, the procedure proposed in this study is expected to contribute to the establishment of proper maintenance plan such as the quantitative condition assessment and strengthening of corrugated steel plate structure.

A Study on Influence of Constructed Bridge Abutment in Landfill Slope under Laterally Displacing (측방유동 발생 시 성토사면에 시공된 교대의 영향에 대한 연구)

  • Lee, Hangyu;Hong, Jongouk;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.31-41
    • /
    • 2013
  • The damage caused by lateral movement occurs frequently on site where abutment or retaining wall was built on soft ground along with embankment behind and the study on stability of abutment against lateral movement has been mostly focused on soft ground. However lateral movement occurs not only on soft ground but also on embankment slope which causes the impact on structure. The bridges built in Korea are mostly on mountainous area than soft ground. This study is intended to analyze the ground behavior resulting from lateral movement using finite element analysis method to the section as well as propose the basic data for abutment design on embankment slope through the analysis of the outcome of reinforcement method. As a result, when it comes to the reinforcement with soil surcharge and stabilized pile in slope, lateral movement was reduced by 4~30% and displacement on bearing shoe on abutment was reduced by 2~13%. On the contrary, when reinforced with EPS, lateral float was reduced by 97% and maximum horizontal displacement of bearing shoe on abutment was reduced by 95%. Thus, it's necessary to identify the design technique which is applicable to domestic condition through additional tests and more reliable study using numerical analysis and comparing the measured values shall follow.

Life Cycle Cost Analysis at Design Stage of Cable Stayed Bridges based on the Performance Degradation Models (성능저하모델에 기초한 사장교의 설계단계 생애주기비용 분석)

  • Koo, Bon Sung;Han, Sang Hoon;Cho, Choong Yuen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2081-2091
    • /
    • 2013
  • Recently, the demand on the practical application of life-cycle cost effectiveness for design and rehabilitation of civil infrastructure is rapidly growing unprecedently in civil engineering practice. Accordingly, in the 21st century, it is almost obvious that life-cycle cost together with value engineering will become a new paradigm for all engineering decision problems in practice. However, in spite of impressive progress in the researches on the LCC, the most researches have only focused on the Deterministic or Probabilistic LCC analysis approach and general bridge at design stage. Thus, the goal of this study is to develop a practical and realistic methodology for the Life-Cycle Cost LCC-effective optimum decision-making based on reliability analysis of bridges at design stage. The proposed updated methodology is based on the concept of Life Cycle Performance(LCP) which is expressed as the sum of present value of expected direct/indirect maintenance costs with expected optimal maintenance scenario. The updated LCC methodology proposed in this study is applied to the optimum design problem of an actual highway bridge with Cable Stayed Bridges. In conclusion, based on the application of the proposed methods to an actual example bridge, it is demonstrated that a updated methodology for performance-based LCC analysis proposed in this thesis, shown applicably in practice as a efficient, practical, process LCC analysis method at design stage.

Development of Green Cement Type Grouting Materials with High Toughness and Non-Shrinkage Including Powder of Waste Tire and Resin (분말 폐타이어와 분말 수지를 함유한 환경친화적 고인성 시멘트계 무수축 그라우트재의 개발)

  • Park, Seok-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.623-630
    • /
    • 2007
  • Grouting materials are used for the unification of superstructural and substructural body like bridge seat (shoe) or machinery pedestal and e.t.c by filling their intercalary voids. Accordingly, grouting materials have been developed and used mainly with products of high strength because those materials are constructed specially in a part receiving large or impact load. In this situation, the structural body constructed by grouting materials with high stiffness-centered (caused by high strength) products is apt to cause brittle failure when receiving over a limit stress and to cause cracks according to cumulative fatigue by continuous and cyclic load. In addition, grouting materials are apt to cause cracks by using too much rapid hardening agents that give rise to high heat of hydration to maintain high strength at early age. In this study, to overcome these problems, cement type grouting materials including powder of waste tire and resin as elastic materials which aim to be more stable construction and to be improvement of mother-body's unification are developed and endowed with properties of high toughness and high durability add to existing properties of high flowability, non-shrinkage and high strength. Besides, this study contribute to of for green construction materials for being possible recycling industrial waste like waste tire and flyash. On the whole, seven type mixing conditions are tested and investigated to choose the best mixing condition.

Life-Cycle Cost-Effective Optimum Design of Steel Bridges Considering Environmental Stressors (환경영향인자를 고려한 강교의 생애주기비용 최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, Cheol Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.227-241
    • /
    • 2005
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology for steel bridges considering the long-term effect of environmental stressors such as corrosion and heavy truck traffics on bridge reliability. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost, and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure, which depends upon the prior and updated load and resistance histories, should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model, which takes into consideration corrosion initiation, corrosion rate, and repainting effect, are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40m+50m+40m=130m). Various sensitivity analyses are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the volume of truck traffic significantly influence the LCC-effective optimum design of steel bridges. Thus, these conditions should be considered as crucial parameters for the optimum LCC-effective design.

A Study on Applicability and External / Internal Stability of true MSEW abutment with slab (순수형 보강토교대의 슬래브교에 대한 적용성 및 외적/내적 안정성 검토)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.263-274
    • /
    • 2018
  • In this study, the applicability and external/internal stability of a MSEW abutment with a slab were investigated. Structural analysis of slab bridges between 10 ~ 20.0 m and thicknesses of 0.7 ~ 0.9 m was carried out to calculate the reaction forces due to dead and live loads acting on the bridge supports. The slab bridge with a length of 20.0 m satisfied the allowable contact pressure of 200 kPa for the true MSEW abutment. Because the external stability of the true MSEW abutment was dominated by the geometry of the MSE wall, the change in the factor of safety due to the load of the super-structure is small. Because the stiffness of the foundations is fixed and the load of the super-structure is increased, the factor of safety of the bearing capacity was reduced. As the load of the super-structure was increased, the horizontal earth pressure of the true MSEW abutment increased greatly. As a result, the pullout and fracture of the uppermost reinforcement, which are the factors of safety, did not meet the design criteria. Therefore, it is necessary to increase the pullout resistance and the long-term allowable tensile force of the reinforcement placed on the top of the reinforced soils to ensure efficient design and performance of a true MSEW abutment.

Establishment of Navigational Risk Assessment Model Combining Dynamic Ship Domain and Collision Judgement Model (선박동적영역과 충돌위험평가식을 결합한 항해위험성평가모델 전개)

  • Kim, Won-Ouk;Kim, Chang-Je
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.36-42
    • /
    • 2018
  • This paper considers the Marine Traffic Risk Assessment for fixed and moving targets, which threaten officers during a voyage. The Collision Risk Assessment Formula was calculated based on a dynamic ship domain considering the length, speed and maneuvering capability of a vessel. In particular, the Navigation Risk Assessment Model that is used to quantitatively index the effect of a ship's size, speed, etc. has been reviewed and improved using a hybrid combination of a vessel's dynamic area and the Collision Risk Assessment Formula. Accordingly, a new type of Marine Traffic Risk Assessment Model has been suggested giving consideration to the Speed Length Ratio, which was not sufficiently reflected in the existing Risk Assessment Model. The larger the Speed Length Ratio (dimensionless speed), the higher the CJ value. That is, the CJ value is presented well by the Speed Length Ratio. When the Speed Length Ratio is large, states ranging from [Caution], [Warning], [Dangerous] or [Very Dangerous] are presented from a greater distance than when the Speed Length Ratio is small. The results of this study, can be used for route and port development, including dangerous route avoidance, optimum route planning, breakwater width, bridge span, etc. as well as the development of costal navigation safety charts. This research is also applicable for the selection of optimum ship routing and the prevention of collisions for smart ships such as autonomous vessels.

Dynamic Behavior of Large Diameter steel Pipe Piles during driving (대구경 강관말뚝의 항타시 동적 거동)

  • 이영남;이종섭
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.141-148
    • /
    • 2000
  • For the construction of 4.8km long Multi-Purpose Jamuna Bridge in Bangladesh, 2 or 3 large diameter open-ended steel pipe piles were used for the foundation of piers. A total of 123 piles were driven for 50 piers and 2 test piles from the river bed through the normally-consolidated upper sand layer and rested n top of gravel layer. Two types of piles, having 3.15 or 2.50m diameter and variable wall thickness in the range of 40 to 60mm, were driven to the depths of 69 to 74m with the rake of 6:1 by connecting 2 or 3 pieces of short piles. Dynamic pile tests were performed on 24 selected piles during pile driving and soil plug length inside the pile was also measured after driving of each short section.These piles were plugged with soil to, though slightly affected by pile diameters, about 75% of total length of pile driven. Active plug at the tip of pile contributed substantial amount of inner skin friction to the total capacity. Piles soon after driving showed a skin-friction dominant pile behaviour, tat is, 90% of total capacity being developed by skin resistance. Quakes values and Smith damping factors were almost constant regardless of pile diameters. This result reflects the influence of uniform soil condition at the site.

  • PDF