• 제목/요약/키워드: 괴델

검색결과 23건 처리시간 0.018초

A reconstruction of the G$\ddot{o}$del's proof of the consistency of GCH and AC with the axioms of Zermelo-Fraenkel set theory

  • 최창순
    • 한국수학사학회지
    • /
    • 제24권3호
    • /
    • pp.59-76
    • /
    • 2011
  • NBG의 공리들을 충족시키는 모델로서의 집합 V 를 도입하고 그것의 요소들을 sets라 부르고 그것의 부분집합들을 classes라 부른다. 일반연속체가설 (GCH) 와 선택공리 (AC) 가 ZF 집합론과 무모순이라는 것에 대한 괴델의 증명을 그 이후 나온 Mostowski-Shepherdson mapping 정리, Tarski-Vaught 정리 및 Montague-Levy 정리의 반사원리들, NBG가 ZF의 보존적 확장이라는 정리 등을 이용하여 재구성해 본다.

수학적 참과 증명가능성 (Mathematical truth and Provability)

  • 정계섭
    • 논리연구
    • /
    • 제8권2호
    • /
    • pp.3-32
    • /
    • 2005
  • 수론(Number theory)과 수학 전반에 걸쳐 무모순성을 확립하고자 한 힐버트의 합리주의적 열망은 무모순성을 주장하는 진술 자체가 그 체계 내에서 결정 불가능한 진술이라는 괴델의 두 번째 정리에 의해 좌절된다. 수학의 어떤 문제에서도 수학자가 "Ignorabimus!" (우리는 모른다!) 해서는 안된다는 힐버트의 낙관 또한 수학에서 증명도 반증도 안되는 결정불가능한 진술의 존재로 인하여 무너진다. 힐버트 프로그램은 일체의 모호함을 배제하고 기호와 기호열에 대한 기계적 연산에 기초하기 때문에 그 충격도 그만큼 클 수밖에 없다. 이 프로그램의 좌절은 그래서 무엇보다도 형식화의 한계를 분명히 보여준다. 이제 수학에서는 통사론적인 증명가능성의 개념이 의미론적인 참의 개념보다 우위를 갖게 되었다. 그리고 그가 제안한 알고리듬(기계적 절차)의 개념은 프로그래밍 언어의 출현에 직접 기여하였다. 그래서 우리는 그의 기획이 비록 좌절했지만 위대한 실패라고 믿고 싶다.

  • PDF

연구 프로그램으로서의 힐버트 계획 (Hilbert's Program as Research Program)

  • 정계섭
    • 한국수학사학회지
    • /
    • 제24권3호
    • /
    • pp.37-58
    • /
    • 2011
  • 수리 논리학의 발전은 상당 부분 힐버트 (D. Hilbert, 1862~1943)의 증명이론(Beweistheorie)에 뿌리를 두고 있다. 흔히 '힐버트 계획' (Hilbert's program)으로 불리는 이 계획의 목표는 형식적 공리론적 방법에 의해 수학의 모든 명제와 증명을 형식화하고 이 형식 체계의 완비성과 무모순성 증명을 통해 고전 수학을 '구원' 하고, 수학의 토대를 공고히 하자는 데에 있다. 1931년 괴델의 제 1정리에 의해 결정불가능 명제의 존재가 드러나면서 완전성이 위기를 맞고, 제 2정리에 의해 무모순성의 확립이 무산될 위기에 처한다. 그러나 '상대적' 내지 '부분적' 힐버트 계획은 효과적인 연구 프로그램으로서 살아 있다고 말하는 학자들이 적지 않다. 우리는 특히 힐버트 계획 이 오늘날 구성주의 수학의 발전에 동력을 제공하고 있다는 점을 커리-하워드 대응 (Curry-Howard Correspondence)을 통하여 부각시키고자 했다. 자연연역에서 증명 (proof) 이 바로 컴퓨터 프로그램 (computer program) 에 다름 아니라는 사실에 의해 수학의 형식화 (formalization)는 새로운 조명을 받게 된 것이다. 요컨대 힐버트 계획은 컴퓨터 과학에서 알고리듬 (algorithm) 이라는 핵심개념에 가장 잘 부합되는 것이다.