• Title/Summary/Keyword: 광 디스크

Search Result 373, Processing Time 0.022 seconds

Control of Particle Contamination and Heat Build-Up for Noble Design of an Optical Disk Drive (광디스크 드라이브의 입자 오염 및 열축적 제어를 위한 설계 제안)

  • Oh, Seo-Young;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.25-31
    • /
    • 2003
  • Airborne contaminant particles are intruded into optical disk drives(ODD) due to the flow caused by disk rotation and can be adhered to lens or disk surfaces, which causes decrease of laser power and increase of read/write errors. Such a phenomenon can be more serious as the space between the disk and the lens is reduced fur high-density storage devices. The purpose of this paper is to understand design parameters to reduce the particle intrusion into an ODD. Suggestions are made to prevent the particle intrusion that can decrease the stability of an ODD and also prevent the potential heat build-up problem. The sealing effect of drive and the forced injection of clean air (using HEPA filter) into the drive minimizes intrusion of the outside air and dusts in an ODD remarkably. Moreover it is proved by experiments that the installation of a heatproof pad to isolate heat generation part (PCB) from information read/write sections and the forced injection of dust-free air reduce the gas temperature inside the drive as well as the amount of particles intruded.

The Optimal Design of Air Bearing Sliders of Optical Disk Drives by Using Simulated Annealing Technique (SA 기법을 이용한 광디스크 드라이브 공기베어링 슬라이더의 최적설계)

  • Chang, Hyuk;Kim, Hyun-Ki;Kim, Kwang-Sun;Rim, Kyung-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1545-1551
    • /
    • 2002
  • The optical storage device has recently experienced significant improvement, especially for the aspects of high capacity and fast transfer rate. However, it is necessary to study a new shape of air bearing surface for the rotary type actuator because the optical storage device has the lower access time than that of HDD (Hard Disk Drives). In this study, we proposed the air bearing shape by using SA (Simulated Annealing) algorithm which is very effective to achieve the global optimum instead of many local optimums. The objective of optimization is to minimize the deviation in flying height from a target value 100nm. In addition, the pitch and roll angle should be maintained within the operation limits.

Pull-in Behavior Analysis in Optical Disk Drive Using Phase Plane and Evaluations for Effecting Parameters of it (위상 평면을 이용한 광 디스크 트랙 끌어들임의 동적 해석 및 영향 인자의 평가)

  • Choi, Jin-Young;Park, Tae-Wook;Yang, Hyunseok;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.29-38
    • /
    • 2005
  • The track pull-in behavior analysis in an optical disk drive (ODD) using plane phase and the evaluations for effecting parameters of it are discussed. Track pull-in, track capture procedure to do track following control, is a key factor to increase data transfer rate. First, the relative velocity between the beam spot of an optical pick-up and the target track of an optical disk is analyzed during the track pull-in procedure. In this process, it is showed that the track error signal has nonlinear characteristics which are depending on the time. Second, Runge-Kutta method to solve the nonlinear equation is applied to find the track pull-in behavior, and some optimal parameters to get stable and fast pull-in condition are obtained. Then, the phase plane analysis for track pull-in procedure is presented. Finally, some comments for the simulated results are discussed briefly.

FE Vibration Analysis and Structural Modification of Slim Type Optical Disk Drive (유한요소 해석을 통한 슬림형 광디스크 드라이브의 진동해석 및 구조 동특성 변경)

  • Kim, Kyung-Tae;Lim, Seung-Ho;Lee, Yong-Hyun;Park, No-Cheol;Park, Young-Pil;Lee, In-Hwan;Lee, Han-Baek;Cha, Ik-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1284-1287
    • /
    • 2007
  • Recently, the need for slim type optical disk drive(ODD) has increased with popularization of lightweight notebook. Because of its lightweight and small structure, slim type ODD has low structural stiffness and it is weak to high-speed disk vibration. In this paper, Finite Element(FE) Model of slim type ODD is constructed and verified by experimental modal analysis. Additionally, sensitivity analysis is performed about structural parameters. As a result of sensitivity analysis, improved characteristic is verified by experiments using a sample of new model.

  • PDF

Development of Rotary VCM type Actuator for Small Form Factor Optical Disk Drive (초소형 광디스크 드라이브용 VCM타입 엑추에이터 개선)

  • Woo, Jung-Hyun;Kim, Sa-Ung;Song, Myong-Gyu;Lee, Dong-Joo;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.474-478
    • /
    • 2006
  • It is becoming more significant to develop a rotary voice coil motor(VCM) type's actuator for small form factor (SFF) optical disk drive(ODD), as portables are getting more and more popularized nowadays. The actuator which is applicable to small-sized ODD with a compact flash(CF) II card size was developed and fabricated. The experimental results showed that the finite element(FE) model is different from the fabricated model. And so flexible mode frequencies did not satisfy specifications of small-sized ODD, and tuning. Tuning procedures were required to improve dynamic characteristics of the fabricated actuator through finite difference method(FDM). At first, design variables were extracted through parameter study and the tuned FE model was improved by design of experiment(DOE). Consequently, It was confirmed that the improved model was applicable to SFF ODD.

  • PDF

Design of a GA-Based Fuzzy PID Controller for Optical Disk Drive (유전알고리즘을 이용한 Optical Disk Drive의 퍼지 PID 제어기 설계)

  • 유종화;주영훈;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.598-603
    • /
    • 2004
  • An optical head actuator of an optical disk drive consists of two servo mechanisms for the focusing and the tracking to acquire data from disk. As the rotational speed of the disk grows, the utilized lag-lead-lead compensator has known to be above its ability for precisely controlling the optical head actuator. To overcome the difficulty, this paper propose a new controller design method for optical head actuator based fuzzy proportional-integral-derivative (PID) control and the genetic algorithm(GA). It employs a two-stage control structure with a fuzzy PI and a fuzzy PD control and is optimized by the GA to yield the suboptimal fuzzy PID control performance. It is shown the feasibility of the proposed method through a numerical tracking actuator simulation.

A Study on Flow Fields in an Optical Disc Drive (광 디스크 드라이브 내부 유동장에 관한 연구)

  • Jung Ji Won;Choi Myung-Ryul;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.224-231
    • /
    • 2005
  • The present study investigates flow characteristics in an optical disc drive (ODD). Detailed knowledge of the flow characteristics is essential to analyze flow-induced noise and vibration, forced convection and flow friction loss. The ODD used in a personal computer is used for the experiment and rotating velocity of disc is under the 4500 rpm. Time-resolved velocity component and velocity spectrum are obtained using the laser Doppler anemometry (LDA), and the flow patterns induced by rotating disc in the ODD are calculated by a commercial finite volume method at the same time. The results show that the front holes reduce flow-induced noise and the position of pickup body only affects flow near the window. Furthermore, it is possible for cooling of heat sources in the drive through measuring the flow fields under the tray. In addition, the numerical results are well matched up to the experimental results, therefore, the validation of the numerical results can be achieved. From the validation of numerical results, it is possible to predict the flow characteristics of the region where it is unable to conduct the experiment.