• 제목/요약/키워드: 광합성 발효

검색결과 22건 처리시간 0.024초

미생물에 의한 수소생산: Dark Anaerobic Fermentation and Photo-biological Process (Microbial hydrogen production: Dark Anaerobic Fermentation and Photo-biological Process)

  • 김미선;백진숙
    • KSBB Journal
    • /
    • 제20권6호
    • /
    • pp.393-400
    • /
    • 2005
  • 수소를 생산하는 미생물은 크게 광합성 세균(photosynthetic bacteria), 혐기성세균(non-photosynthetic anaerobic bacteria), 조류(algae) 등으로 구분되고, 이들의 수소 생성 기작, 사용가능기질 및 수소 발생량은 상당한 차이가 있다. 광합성세균은 Rhodospirillaceae, Chromatiaceae 및 Chlorobiaceae로 구분되며, 이는 각각 홍색비유황세균(purple non-sulfur bacteria), 홍색유황세균(purple sulfur bacteria), 녹색유황세균(green sulfur bacteria)으로 통칭된다. 혐기성 세균은 절대 또는 통성혐기세균중 일부가 수소생산에 관여하며, 조류는 녹조류(green algae)와 남조류(blue-green algae, cyanobacteria)가 알려져 있다. 생물학적 수소생산 기술은 (1) 녹조류(green algae)가 광합성 메카니즘에 의해 수소를 생산하는 직접 물 분해 수소생산(direct bio-photolysis) (2) 광합성 작용에 의해 물을 분해하여 산소를 발생하고, 동시에 공기 중 이산화탄소를 고정하여 고분자 저장물질로 균체 내에 저장한 후 혐기 발효 또는 광합성 발효에 의해 수소를 발생하는 간접 물 분해 수소생산(indirect bio-photolysis or two stage photolysis) (3) 빛이 존재하는 혐기상태 배양 조건에서 홍색 세균에 의한 광합성 발효(photo-fermentation) 또는 (4) 광이 존재하지 않는 조건에서 혐기 미생물에 의해 수소와 유기산을 내는 혐기 발효(dark anaerobic fermentation) (5) 균체 외(in virro) 수소 발생 (6) 일산화탄소 가스 전환 반응(microbial gas shift reaction)에 의한 수소 생산 기술로 구분할 수 있다. 물로부터 생물학적 기술에 의한 수소생산은 공기 중의 이산화탄소를 고정하고, 수소와 산소를 발생하는 원천기술로써 오래 전부터 미국, 유럽에서 태양에너지를 이용하는 광합성 미생물의 분리, 개선 및 반응기에 관한 연구가 축적되어 왔으며, 유기물 즉 바이오매스로부터 혐기 및 광합성 발효를 연속적으로 적용하는 기술은 비교적 최근에 일본을 비롯한 유기성 폐기물이 많은 국가에서 수소에너지 생산과 유기성 폐기물 처리라는 두 가지 목적에 부합하는 연구로써 활발히 진행되고 있다. 유기성 폐기물이나 폐수와 같은 수분함량이 높은 바이오매스는 대부분이 매립처리 되는 실정이지만 높은 수분 함량 때문에 매립 시 발생하는 침출수는 환경오염의 주범으로 가까운 장래에는 매립도 금지될 전망이다. 이와 같은 수소에너지 생산기술과 이용시스템 개발은 화석연료 사용을 최소화 할 수 있으며, 국내에서 다량 발생하는 유기성 폐기물을 이용한 에너지 생산으로 자원 강대국 입지에 설 수 있다. 미생물에 의한 수소생산 기술은 청정에너지 생산과 아울러, 동시에 산소 발생, 공기 중 이산화탄소 고정, 식품공장 폐수 및 음식쓰레기와 같은 유기성 폐기물 처리 등 환경에 이로운 방향으로 진행될 뿐만 아니라, 미생물 자체가 갖는 생물 산업성도 높아서 비타민류, 천연색소, 피부암 치료제등의 고부가가치 의약품 생산도 활성화할 수 있다.

유기성 폐기물 및 폐수로부터 2단계 생물학적 수소생산 및 통합화 시스템 (Two-stage Biological Hydrogen Production form Organic Wastes and Waste-waters and Its Integrated System)

  • 김미선;윤영수
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.52-64
    • /
    • 2002
  • 유기성 폐기물을 이용하여 생물학적 수소생산 통합화 시스템 연구를 수행하였다. 통합화 시스템은 유기성폐기물의 전처리, 2단계 혐기발효 및 광합성 배양으로 구성된 생물학적 수소생산 공정, 초임계수 가스화 공정, 생산된 가스의 저장, 분리 및 연료전지를 이용한 전력 생산으로 구성되었다. 실험에 사용된 유기성 폐자원은 식품공장 폐수, 과일폐기물, 하수슬러지이며, 전처리는 폐기물에 따라 열처리 및 물리적 처리를 하였으며, 전처리된 시료는 생물학적 수소생산 공정에 직접 적용되었다. Clostridium butyricum 및 메탄 생성조에서 발생하는 하수슬러지중의 미생물 복합체는 수소생산 혐기 발효공정에 사용되었으며, 광합성 수소생산 미생물인 홍색 비유황 세균은 광합성 배양에 사용되었다. 생물학적 공정에서 발생하는 미생물 슬러지는 초임계수 가스화 공정으로 수소를 발생하였으며, 슬러지 중의 COD를 저하시켰다. 생물학적 공정 및 초임계수 가스화 공정에서 발생하는 수소는 가스탱크에 가입상태로 저장한 후, 95%순도로 분리하였으며, 정제된 수소는 연료전지에 연결하여 전력 생산을 하였다.

바이오기술 이용 수소제조 (Biological Hydrogen Production)

  • 김미선;오유관
    • 에너지공학
    • /
    • 제15권2호
    • /
    • pp.118-126
    • /
    • 2006
  • 미생물을 이용하여 수소를 생산하는 기술은 광합성 작용에 의한 직간접 물분해, 광합성 발효, 혐기발효, 균체외 반응 등 여러 가지 기술이 있으며 본 논문에서는 이들의 적용되는 미생물과 수소생산 메커니즘을 중심으로 소개하였다. 동시에 본 기술들의 현재까지 개발된 사례를 선진국과 국내 현황을 중심으로 기술하였다. 생물학적으로 수소를 생산하는 기술은 1940년대 후반부터 실험실적인 연구가 시작되었으나, 1990년대 환경문제를 해결하기 위해서 전 세계적으로 연구가 다시 활성화되었으며, 이 글에서는 미국, 일본, 유럽연합 및 한국을 중심으로 국내외 연구현황을 소개하였다.

생물전기화학적 기술을 이용한 물질 전환

  • 김병홍
    • 미생물과산업
    • /
    • 제17권2호
    • /
    • pp.18-21
    • /
    • 1991
  • 생물은 자기 복제를 통한 생장이나 생명유지를 위해 에너지를 필요로 한다. 화학영양생물은 화학에너지를 발효 혹은 호흡을 통해 생물학적 에너지로 전환시키며, 광영양생물은 광합성 작용을 통해 광에너지를 이용한다. 발효, 호흡, 광합성은 모두 산화-환원 반응을 통해 이루어진다. 생물의 모든 에너지 전환반응은 산화-환원 반응, 즉 전자의 흐름으로 이루어지며 생명현상이 에너지를 필요로 하기 때문에 생명현상은 전자의 흐름으로 이루어진다고 할 수 있다. 모든 생물이 에너지 전환 반응에 산화-환원 반응을 이용한다는 말은 생물이 많은 종류의 산화-환원 효소를 보유하고 있다는 뜻이며, 실제 많은 종류의 산화-환원 효소가 발견되고 연구되었다.

  • PDF

탄산가스($\textrm{CO}_2$) 농도의 계측 (3) ($\textrm{CO}_2$ Concentration Measurement (3))

  • 류관희
    • 생물환경조절학회지
    • /
    • 제2권1호
    • /
    • pp.65-68
    • /
    • 1993
  • 탄산가스는 탄소나 그 화합물이 완전연소할 때, 생물이 호흡할 때, 발효 등에 의하여 생성되는 무색, 무취의 기체로 분자식은 $CO_2$(이산화탄소)이며, 분자량은 44, 비중은 공기 1에 대하여 1.529이다. 식물은 탄산가스와 물을 원료로 태양에너지를 이용하여 탄수화물을 합성하므로 탄산가스는 광합성에 절대적으로 필요하며, 탄산가스가 충분하게 공급되지 않으면 광합성이 원활하게 이루어질 수가 없다. 일반적으로 식물은 대기중의 농도(0.03%)보다 높은 농도에서 포화점을 갖고 있으므로 대기중에서의 탄산가스의 농도는 식물의 광합성작용에 충분하지 못하며, 생육촉진을 위해서는 인위적인 방법으로 탄산가스 농도를 증가시키는 방법이 실용화되고 있다.(중략)

  • PDF

생물학적 수소생산 공정 (Biological Hydrogen Production Processes)

  • 신종환;박태현
    • Korean Chemical Engineering Research
    • /
    • 제44권1호
    • /
    • pp.16-22
    • /
    • 2006
  • 생물학적 수소생산 공정은 다른 열화학적 공정이나 전기화학적 공정에 비하여 환경친화적이며 에너지를 덜 소모하는 공정이다. 생물학적 수소생산 공정은 크게 두 가지로 구별할 수 있는데, 광합성에 의한 수소생산과 혐기발효에 의한 수소생산이 그것이다. 광합성에 의한 수소생산 공정은 주로 물로부터 수소를 생산하고 동시에 공기 중의 이산화탄소도 저감하는 특징을 가지고 있으며, 혐기발효에 의한 수소생산 공정은 유기 탄소원을 섭취하는 박테리아에 의한 발효를 통해 이루어지는 공정이다. 본 논문에서는 생물학적 수소생산 공정에 대한 그간의 연구들에 대하여 살펴 보았다.

홍색 비유황 광합성 세균 Rhodobacter sphaeroldes KD131의 수소생산에 미치는 빛 세기 및 질소원의 영향 (Effect of Light Intensity and Nitrogen Source on Hydrogen Production Using Rhodobacter sphaeroldes KD131)

  • 전효진;김미선
    • 한국수소및신에너지학회논문집
    • /
    • 제21권1호
    • /
    • pp.12-18
    • /
    • 2010
  • Photobiological hydrogen production using Rhodobacter sphaeroides KD131 was studied on the effect of light intensities and nitrogen sources. Media containing malate and glutamate were shown higher hydrogen production rate than that containing succinate and $(NH_4)_2SO_4$ at the $110\;W/m^2$ illumination by halogen lamp at $30^{\circ}C$. Media lacking glutamate as the nitrogen source exhibited higher hydrogen production than that containing glutamate. Initial cell concentration was optimized to 1.0 at the absorbance of 660 nm. Hydrogen production was increased by increasing the light intensity from 0 to $216\;W/m^2$ but the increasing rate declined over $108\;W/m^2$.

시설참외 터널지주 재배가 생육 및 수량에 미치는 영향 (Round-frame-staking Cultivation Increased Growth and Yield of Oriental Melon(Cucumis melo L, var. Makuwa))

  • 배수곤;최성국;신용습;연일권;최부술
    • 한국생물환경조절학회:학술대회논문집
    • /
    • 한국생물환경조절학회 1998년도 임시총회 및 학술논문발표요지
    • /
    • pp.77-81
    • /
    • 1998
  • 참외는 일년생 작물로 손자덩굴에 과실이 착과되며 포복재배를 하고 있어, 덩굴의 과번무로 인한 채광과 통풍불량 및 고온으로 착과와 과실비대가 부진하여 품질이 저하되며 호흡량의 증가로 광합성율의 저하와, 각종 병해충 및 생리장해인 발효과 발생으로 많은 피해를 주고 있는 실정이다. 조 등(1997)은 관행적인 포복재배에 의존하고 있어 단위 면적당 수량 증수는 크게 기대할 수 없다고 하였으며, 최 등(1996)은 지주재배에서 과실의 당도가 높았으며 기형과와 발효과의 감소로 상품과 수량은 증수되었다고 보고하였으며, 함 등(1996)은 줄유인재배는 수량 증수는 가져왔으나 줄유인 및 관리에 많은 노동력이 소요되었다고 하였다. (중략)

  • PDF

저광도 조건시 참외의 적과와 엽면시비 효과 (Effect of Fruit Thinning and Foliar Fertilization under the Low Light Intensity in Oriental Melon(Cucumis melo L. var. makuwa MAKINO))

  • 서태철;강용구;윤형권;김영철;서효덕;이상규
    • 생물환경조절학회지
    • /
    • 제12권1호
    • /
    • pp.17-21
    • /
    • 2003
  • 참외재배시 저광도 조건시 상품수량의 급격한 저하를 막기 위하여 본 연구가 수행되었다. 과실 비대기에 해당되는 착과후 10일부터 400 $\mu$mol$.$m$^{-}$2$.$S$^{-1}$정도의 저광도 조건이 지속되면 광합성 속도도 떨어지고, 엽록소 함량도 낮았으며 특히 요소 무엽면시비구의 광합성속도는 크게 저하되었다 당도에 있어서는 자연광에 비해 저광도 처리구가 전반적으로 낮았는데, 착과수가 많고 무엽면시비구일수록 낮았다. 발효과 발생률은 요소 엽면시비 유무에 관계없이 자연광에서는 4% 미만으로 발생되었는데, 저광도 조건에서는 10% 이상 발생되었다. 특히 저광도 조건에서 적과수를 적게 한 처리구일수록 발효과 발생률이 높았는데, 적과를 하지 않은 처리구는 각각 39와 48%로 매우 높은 발생율을 보였다. 수확시기 지연은 요소 엽면시비 유무와 관계없이 자연광에 비해 저광도 조건에서 늦어지는 경향을 보였는데, 적과수가 적을수록 지연정도는 심했다 주당 상품수량에 있어서는 저광도 조건하에서 자연광에 비해 16∼34% 수준 정도로 매우 낮은 수량을 보였는데, 요소 0.5% 액을 엽면시비하고 2개를 적과한 처리구가 34%수준으로 자연광에 비해 다른 처리보다 높은 상품수량을 보였다. 따라서 참외재배시 과실 착과후 10일경부터 강우 등에 의해 장기간 저광도 조건이 지속될 것으로 전망되면 상품수량의 급격한 저하를 막기 위하여 주당 6개의 착과 과실중에서 2개를 적과하고, 요소 0.5%액을 2회 정도 엽면시비 해주는 것이 바람직 할 것으로 사료된다.