• Title/Summary/Keyword: 광탄성 측정

Search Result 80, Processing Time 0.037 seconds

Measurement of Isochromatic Fringe Distribution of a TV Glass Panel by Use of Photoelastic 4-step Phase Shifting Method (광탄성 4단계 위상이동법을 이용한 TV유리패널의 등색프린지 분포측정)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Cho, Seong-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • This paper presents the experimental results measured by photoelastic 4-step phase shifting method for the isochromatic fringe distribution in a TV glass panel. In the conventional photoelastic method, the isochromatic fringe orders are measured manually point by point. The 4-step phase shifting method uses four images obtained from a circular polariscope by rotating the analyzer to $0^{\circ},\;45^{\circ},\;90^{\circ}$, and $135^{\circ}$. In order to use the 4-step phase shifting method, the elements of a polariscope should be aligned to isoclinic direction at a point and/or along a line where isochromatic fringe distribution is measured. Experimental results obtained from the 4-step phase shifting method are compared with those measured by the Senarmont compensation method. Both results are well agreed. Then, isochromatic fringe distributions in the TV glass panel that is heat-treated before and after are compared. Maximum and minimum isochromatic fringe orders in the TV glass panel with before- and after-heat treatment are changed approximately two times.

Stress Analysis of an Edge-Cracked Plate by using Photoelastic Fringe Phase Shifting Method (광탄성프린지 위상이동법을 이용한 에지균열판의 응력 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Cho, Sung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.3
    • /
    • pp.213-220
    • /
    • 2000
  • The method of photoelasticity allows one to obtain principal stress differences and principal stress directions in a photoelastic model. In the classical approach, the photoelastic parameters are measured manually point by point. The previous methods require much time and skill in the identification and measurement of photoelastic data. Fringe phase shifting method has been recently developed and widely used to measure and analyze fringe data in photo-mechanics. This paper presents the test results of photoelastic fringe phase shifting technique for the stress analysis of a circular disk under compression and an edge-cracked plate subjected to tensile load. The technique used here requires four phase stepped photoelastic images obtained from a circular polariscope by rotating the analyzer at $0^{\circ}$, $45^{\circ}$, $90^{\circ}$ and $135^{\circ}$. Experimental results are compared with those or FEM. Good agreement between the results can be observed. However, some error may be included if the technique is used to general direction which is not parallel to isoclinic fringe.

  • PDF

Simulation of Separating Isoclinics and Isochromatics from Photoelastic Fringes of a Disk using 8-step Phase Shifting Methodology (광탄성 프린지 위상이동법을 적용한 디스크의 등경 및 등색프린지 분리법에 관한 시뮬레이션)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Cho, Sung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.189-196
    • /
    • 2001
  • Photoelasticity is one of the most widely used methods for whole field stress analysis. In photoelasticity, the difference and the directions of the principal stresses we given isochromatic and isoclinic fringe patterns. Conventionally, principal stress directions are measured manually by relating the polarizer and analyzer of a plane polariscope at the same time. This is known to be the Tardy compensation method. This measurement can be very tedious and time consuming in whole field analysis. It is not possible to separate isoclincs from photoelastic fringes by conventional photoelastic technique. In this study, photoelastic theory is represented by Jones matrices and 4-steps and 8-steps phase shifting methods are described A feasibility study using computer simulation is done to separate isoclincs and isochomatics from photoelastic fringes of a circular disk under diametrical compression. Fringe patterns of the disk are generated using stress optic law. The magnitudes of isoclincs and isochromatics obtained from 8-step phase shifting method are compared with those of theories. From computer simulation, it is verified to separate isoclincs and isochomatics from photoelastic fringes.

  • PDF

The simple measurement of physical properties and stress fringe value for photo-elastic orthotropic material (광탄성 직교이방성체의 물성치와 응력 프린지치 간이 측정법)

  • 황재석;이광호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.23-36
    • /
    • 1990
  • The various composite materials have been developed with the development of high strength material and the increasement of composite material usage. Therefore many researchers have studied about the stress analysis and the fracture mechanics for composite materials through the experiment or the theory. Among the experimental methods, the photoelastic experiments have been used for the stress analysis of the isotropic structures or the anisotropic structures. To analyze the stresses in the orthotropic material with photoelastic experiment, the basic physical properties ( $E_{L}$, $E_{T}$, $G_{LT}$ , .nu.$_{LT}$ ) and the basic stress fringe values ( $f_{L}$, $f_{T}$, $f_{LT}$ )are needed, therefore the relationships between the basic physical properties and the stress fringe values were derived in this paper. When the stress fringe value is very large, it was assured by the experiment that the relationships are established both in the room temperature and in the high temperature (T = 130.deg. C). Therefore the basic physical properties can be obtained from the relationships by measuring stress fringe values instead of measuring the basic physical properties.rties.

Material Stress Fringe Constant Measurement of Specimen under Pure Bending Load by Use of Photoelastic Phase Shifting Method (광탄성 위상이동법을 이용한 순수굽힘보 시편의 재료 응력 프린지 상수 측정)

  • Liu, Guan Yong;Kim, Myung Soo;Baek, Tae Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1387-1394
    • /
    • 2014
  • In a photoelastic experiment, it is necessary to know the material stress fringe constant of the photoelastic specimen to determine the stresses from the measured isochromatic fringe orders. The material stress fringe constant can be obtained using a simple tension specimen and/or a circular disk under diametric compression. In these methods, there is generally a need to apply numerous loads to the specimen in response to the relationship of the fringe order. Then, the least squares method is used to obtain the material constant. In this paper, the fringe orders that appear on a four-point bending specimen are used to determine the fringe constant. This method requires four photoelastic fringes obtained from a circular polariscope by rotating the analyzer to 0, ${\pi}/4$, ${\pi}/2$, and $3{\pi}/4$ radians. Using the four-point bending specimen to determine the material stress fringe constant has an advantage because measurements can be made at different locations by applying a constant load. The stress fringe constant measured with this method is within the range suggested by the manufacturer of the photoelastic material.

Hybrid Stress Analysis around a Circular Hole in a Tensile Plate by Use of Phase Shifting Photoelasticity (광탄성 위상이동법에 의한 인장시편 원형 구멍주위 하이브리드 응력해석)

  • Baek, Tae-Hyun;Lee, Choon-Tae;Yang, Min-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2007
  • A hybrid experimental-numerical method is presented for determining the stresses around a circular hole in a finite-width, tensile loaded plate. Measured fringe orders along straight lines provided the input information on the external boundary of the hybrid element. In order to see the effects of varying stress field, different numbers of terms in a power-series representation of the complex type conformal mapping stress function were tested. For qualitative comparison, actual isochromatic fringes were compared with reconstructed theoretical fringes using stress-optic law. For quantitative comparison, relative errors and standard deviations with respective to relative errors were analyzed for all measured points by changing the number of terms of stress function. The hybrid results are highly comparable with those predicted by FEA. The results show that this approach is effective and promising because isochromatic data along the straight lines in photoelasticity can be conveniently measured by use of phase shifting photoelasticity.

THE CHANGE OF THE INITIAL DYNAMIC VISCO-ELASTIC MODULUS OF COMPOSITE RESINS DURING LIGHT POLYMERIZATION (광중합 복합레진의 중합초기 동적 점탄성의 변화)

  • Kim, Min-Ho;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.450-459
    • /
    • 2009
  • The aim of this study was to measure the initial dynamic modulus changes of light cured composites using a custom made rheometer. The custom made rheometer consisted of 3 parts: (1) a measurement unit of parallel plates made of glass rods, (2) an oscillating shear strain generator with a DC motor and a crank mechanism, (3) a stress measurement device using an electromagnetic torque sensor. This instrument could measure a maximum torque of 2Ncm, and the switch of the light-curing unit was synchronized with the rheometer. Six commercial composite resins [Z-100 (Z1), Z-250 (Z2), Z-350 (Z3), DenFil (DF), Tetric Ceram (TC), and Clearfil AP-X (CF)] were investigated. A dynamic oscillating shear test was undertaken with the rheometer. A certain volume ($14.2\;mm^3$) of composite was loaded between the parallel plates, which were made of glass rods (3 mm in diameter). An oscillating shear strain with a frequency of 6 Hz and amplitude of 0.00579 rad was applied to the specimen and the resultant stress was measured. Data acquisition started simultaneously with light curing, and the changes in visco-elasticity of composites were recorded for 10 seconds. The measurements were repeated 5 times for each composite at $25{\pm}0.5^{\circ}C$. Complex shear modulus G*, storage shear modulus G', loss shear modulus G" were calculated from the measured strain-stress curves. Time to reach the complex modulus G* of 10 MPa was determined. The G* and time to reach the G* of 10 MPa of composites were analyzed with One-way ANOVA and Tukey's test ($\alpha$ = 0.05). The results were as follows. 1. The custom made rheometer in this study reliably measured the initial visco-elastic modulus changes of composites during 10 seconds of light curing. 2. In all composites, the development of complex shear modulus G* had a latent period for $1{\sim}2$ seconds immediately after the start of light curing, and then increased rapidly during 10 seconds. 3. In all composites, the storage shear modulus G" increased steeper than the loss shear modulus G" during 10 seconds of light curing. 4. The complex shear modulus of Z1 was the highest, followed by CF, Z2, Z3, TC and DF the lowest. 5. Z1 was the fastest and DF was the slowest in the time to reach the complex shear modulus of 10 MPa.

Investigation of the Change of Soil Arch Structure in Model Particle Assembly Subjected to Displacing Trapdoor via Photoelastic Measurement Technique (트랩도어 하강이 일어나는 모형 입자 입상체에서 광탄성 측정 기법을 이용한 흙 아치 구조의 변화 조사)

  • Shin, Sang-Young;Jung, Young-Hoon;Kim, Taesik
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.10
    • /
    • pp.31-40
    • /
    • 2016
  • In order to investigate the change in soil arch structure developed within the soil subjected to trapdoor movement, various responses in the deformed particle assembly were observed via photoelastic measurement technique. The particle assembly was composed of the regularly stacked model particles coated by thin photoelastic material. Variation of the internal structure transmitting contact forces were observed by taking images showing the photoelastic responses and compared with the change in slip lines and pressures measured by load cells placed beneath the assembly. Initial soil arch structure established immediately after the trapdoor movement collapsed progressively and meanwhile a new extended structure was developed against further movement of the trapdoor. For the sufficient movement of the trapdoor, initially identical regions bounded by the soil arch structure and slip lines were separated and the region enclosed by slip lines became a part of the region loosing the transmitting contact forces identified by photoelastic measurement.

Ocular Lens Test using Elastic Wave (탄성파를 이용한 안경렌즈 검사)

  • Joung, Maeng-Sig;Cho, Hyun-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.1
    • /
    • pp.37-43
    • /
    • 1999
  • Ocular lens failure can be verified by measuring the elastic wave velocity diffraction patterns of monochromatic wave applied with elastic wave were detected using optical heterodyne method. The elastic wave velocity was measured by analysing the diffraction patterns. According to measured results of the longitudinal elastic wave velocity of the middle index-refraction and high index-refraction lens are 6588.5575 m/s and 3973.53 m/s, respectively.

  • PDF