• Title/Summary/Keyword: 광촉매 처리

Search Result 196, Processing Time 0.026 seconds

A Study on the Swine Wastewater Treatment Using UV/TiO2/H2O2 (UV/TiO2/H2O2를 이용한 축산폐수처리에 대한 연구)

  • Kim, Chang-Kyun;Chung, Ho-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.321-327
    • /
    • 2006
  • This study was performed to provide basic information for evaluating the efficiency and applicable extent of photocatalysis for the treatment of swine wastewater. Acid area was more efficient than neutral and alkalic areas in wastewater treatment, and level of pH3 was the most effective and the treatment efficiency continually increased as the amount of photocatalyst was increased. When the photocatalyst was increased, $TCOD_{Mn}$ was removed faster than chromaticity. Pollutants were more effectively eliminated with both UV light illumination and $TiO_2$ than with either UV or $TiO_2$ alone. The removal efficiency was increased with the addition of $H_2O_2$ as an oxidant, but the removal efficiency was decreased with over an dosage of $H_2O_2$. The optimal dosage of $H_2O_2$ was 200 mg/L. Continuous injection of $H_2O_2$ was required for effective oxidation.

Hybrid Water Treatment of Carbon Ultrafiltration Membrane and Polypropylene Beads Coated with Photocatalyst: Effect of Organic Materials, Photo-oxidation, and Adsorption in Water Back-flushing (탄소 한외여과막 및 광촉매 코팅 폴리프로필렌 구의 혼성 수처리: 물 역세척 시 유기물 및 광산화, 흡착의 영향)

  • Park, Jin Yong;Jung, Chung Ho
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.359-368
    • /
    • 2012
  • For hybrid water treatment of high turbidity water, we used the hybrid module that was composed of photocatalyst packing between tubular membrane outside and module inside. Photocatalyst was PP (polypropylene) bead coated with $TiO_2$ powder by CVD (chemical vapor deposition) process. Water back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling for modified solution was prepared with humic acid and kaolin. Resistance of membrane fouling ($R_f$) decreased as humic acid concentration changed from 10 mg/L to 2 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L, which was the same with the previous results. Then, treatment efficiencies of turbidity and humic acid were above 98.9% and 88.7%, respectively. As results of treatment portions of UF, UF + $TiO_2$, and UF + $TiO_2$ + UV processes, turbidity was treated little by photocatalyst adsorption, and photo-oxidation. However, treatment portions of humic acid by adsorption and photo-oxidation were 2.5% and 12.3%, respectively. Compared with the previous results, treatment portions of humic acid by adsorption and photo-oxidation were different depending on membrane material and pore size. As simplified the process, the membrane fouling resistance after 180 minutes' operation ($R_{f,180}$) increased and the final permeate flux decreased a little.

Synthesis of $TiO_2-Fe_2O_3$ Magnetic Photocatalyst Nanocomposite Powder (자성 광촉매용 $TiO_2-Fe_2O_3$나노복합분말의 합성)

  • 이창우;김순길;이재성
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.103-103
    • /
    • 2003
  • 대기나 물에 용해된 여러 가지 유해한 유기물을 분해하기 위한 방안으로서 다양한 광촉매 재료를 이용하려는 시도가 진행되고 있다. 하지만 광촉매 반응은, 현탁액 내에서 submicrometer 크기를 갖는 반도체재료에서 발생하므로 처리된 폐수로부터 촉매를 제거해야 하는 정제공정 (downstream process)이 필요하며, 이는 경제적인 측면에서 큰 경비를 요구하게 된다. 이를 해결 하기 위하여, 가장 우수한 광촉매 재료로 평가받는 TiO$_2$를 glass beads, sands, silica gel등의 물질에 고정시키거나, TiO$_2$를 자성 입자에 코팅시킨 형태인, 자성 광촉매입자를 응용하려는 연구가 최근 활발하게 진행되고 있다. 따라서 본 연구에서는 광촉매의 고정화와 재활용 효율을 향상시키기 위하여 TiO$_2$ 나노입자를 y-Fe$_2$O$_3$ 나노입자의 표면에 코팅하여 나노입자의 큰 비표면적을 활용하고 미세구조를 제어하여 입자간의 고정특성과 자기적 특성의 제어기술을 확립하고자 하였다.

  • PDF

Activated Carbon-Photocatalytic Hybrid System for the Treatment of the VOC in the Exhaust Gas from Painting Process (도장공정 배기가스 내 VOC 처리를 위한 활성탄-광촉매 복합시스템)

  • Lee, Chan;Cha, Sang-Won;Lee, Tae-Kyu
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.133-139
    • /
    • 2005
  • An activated carbon-photo catalysis hybrid system is proposed for the treatment of VOC produced from paint booth. and its VOC removal performance is experimentally evaluated. Activated carbon tower is designed on the basis of the adsorption characteristics of toluene. Photocatalytic system is designed as the series of $TiO_2/SiO\_2$ fluidized bed reactor and $TiO_2$-coated filters. The present activated carbon-photo catalysis hybrid system shows the VOC removal efficiency within $75\~100\%$ under different VOC species and concentrations.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Ultrafiltration and Photocatalyst: 1. Effects of Photocatalyst and Water-back-flushing Condition (세라믹 한외여과 및 광촉매 혼성공정에 의한 고탁도 원수의 고도정수처리: 1. 광촉매 및 물역세척 조건의 영향)

  • Cong, Gao-Si;Park, Jin-Yong
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.127-140
    • /
    • 2011
  • The effects of $TiO_2$ photocatalyst coating bead concentration, water-back-flushing period (FT), and back-flushing time (BT) were investigated in hybrid process of ceramic ultrafiltration and photocatalyst for advanced drinking water treatment in this study. Photocatalyst coating bead concentration was changed in the range of 10~40 g/L, FT in 2~10 min and BT in 6~30 sec. Then, we observed the effects on resistance of membrane fouling $(R_f)$, permeate flux (J) and total permeate volume $(V_{\Upsilon})$ during total filtration time of 180 min. As decreasing photocatalyst coating bead concentration, $R_f$ increased and J decreased. $V_{\Upsilon}$ was the highest value of 8.85 L at 40 g/L of photocatalyst coating bead concentration. At FT change experiment, $R_f$ decreased and J increased as decreasing FT. Then $R_f$ decreased and J increased according to increasing BT at BT change experiment. Because at NBF (no back-flushing) dramatic membrane fouling reduced membrane pore size, turbid and dissolved organic matters ($UV_{254}$ absorbance) could be removed efficiently. Therefore, treatment efficiencies of turbidity and dissolved organic matters were the highest at NBF. Then by cleaning effect of photocatalyst coating bead, the treatment efficiencies of turbidity and dissolved organic matters increased as decreasing FT and increasing BT.

A Study on the Degradation of Parathion and Reduction of Acute Toxicity in Solar $TiO_2$ Photocatalysis (태양광 $TiO_2$ 광촉매를 이용한 Parathion의 분해와 독성저감에 관한 연구)

  • Kim, Tak-Soo;Kim, Jung-Kon;Choi, Kyung-Ho;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.822-828
    • /
    • 2005
  • The photocatalytic degradation of methyl parathion was carried out using a circulating $TiO_2$/solar system. Under the photocatalytic condition, parathion was more effectively degraded than by the photolysis or $TiO_2$ only condition. The parathion degradation followed pseudo first-order kinetics. With photocatalysis, 10 mg/L parathion was completely degraded within 90 min with a TOC decrease exceeding 63% after 150 min. The nitrogen from parathion was recovered mainly as ${NO_2}^-$, ${NO_3}^-$, and ${NH_4}^+$, 80% of sulfur as ${SO_4}^{2-}$, and less than 5% of phosphorus as ${PO_4}^{3-}$ during photocatalysis. The organic intermediates 4-nitrophenol and paraoxon were also identified, and these were further degraded. Two different bioassays using V. fischeri and D. magna were employed to measure the toxicity reduction in the solutions treated by both photocatalysis and photolysis. Relative toxicity was reduced almost completely after 150 min in both organisms under the photocatalysis, whereas in photolysis, 76 and 57% reduction was achieved for V. fischeri and D. magna, respectively. The acute toxicity reduction pattern corresponded with the decrease in parathion and TOC concentrations.

Treatment of the dyestuff solution using photocatalyst membrane system (분리막ㆍ광촉매 시스템을 이용한 염료 수용액의 처리)

  • 곽민욱;민병렬;탁태문;정건용
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.184-187
    • /
    • 2004
  • 고급산화법 중 하나인 광촉매인 TiO$_2$를 이용한 시스템은 300~400nm 파장의 UV영역에서 비교적 적은 에너지로 유기 오염 물질을 $CO_2$$H_2O$로 산화시킨다[1]. 따라서 폐수용액 중 오염물질을 제거한 경우에도 슬러리로 인한 2차 오염의 문제가 없다. 최근에는 난분해성 물질이나 독성을 가진 물질을 포함된 폐수처리 시설의 고도처리를 위하여 분리막을 도입하는 추세이다.(중략)

  • PDF

Quality Change in Kimchi made of Spring Kimchi Cabbage during Fermentation under Different Storage Conditions (저장조건을 달리한 봄배추로 제조한 김치의 숙성 중 품질 변화)

  • Bang, Hye-Yeol;Cho, Sun-Duk;Kim, Byeong-Sam;Kim, Gun-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.2
    • /
    • pp.378-387
    • /
    • 2017
  • To stabilize the supply of kimchi by extending the storage period of spring kimchi cabbage, this study manufactured kimchi from spring kimchi cabbage under varying storage conditions and periods, and analyzed their quality and sensory characteristics following the maturing period. Trimming loss was lowest in the group of plasma+reverse direction+predrying+HDPE film processing. The salting yield of spring kimchi cabbage stored for 12 weeks was lower than that of spring kimchi cabbage stored for 6 weeks, and the kimchi yield was low in the pre-treatment group of spring kimchi cabbage stored for 12 weeks. The firmness was slightly different according to the storage period from one month of maturation. From the perspective of pH and acidity, the maturation in the reverse direction+pre-drying+HDPE film processing group was slower than that in the normal group (<0.05). In the sensory evaluation, the preference was increased in the low temperature storage processing group as the maturation period was increased (<0.05).

Photocatalytic Treatment of Waste Air Containing Malodor and VOC by Photocatalytic Reactor Equipped with the Cartridges Containing the Media Carrying Photocatalyst (광촉매 카트리지를 활용한 악취 및 VOC를 함유한 폐가스의 광촉매처리)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.80-86
    • /
    • 2013
  • In this study, the photocatalytic reactor system equipped with photocatalyst-carrying-silica-media cartridges [photocatalytic reactor system (1)] was used to perform the treatment of waste air containing malodor and volatile organic compound (VOC). The result of its performance was evaluated and compared with that of the photocatalytic reactor system equipped with commercial photocatalyst-carrying-nonwoven filter-media cartridges [photocatalytic reactor system (2)]. In case of photocatalytic reactor system (1), at the 1st stage of run the removal efficiencies of ethanol and toluene continued to be 80% and 20%, respectively. However, unlike toluene, the removal efficiency of ethanol dropped to 40% at the end of the 1st stage of run. The removal efficiency of hydrogen sulfide decreased from 100% to 90%. At the 2nd stage of its run the removal efficiency of ethanol decreased to 10% while the removal efficiencies of hydrogen sulfide and toluene remained as same as 90% and 20%, respectively, even though the inlet load of toluene increased by factor of four. In the 3rd stage of its run, as the result of application of aluminium-coated reflector film to the inner wall of photocatalytic reactor system, the removal efficiencies of ethanol and toluene increased by 5% to be 15% and 25%, respectively. In case of photocatalytic reactor system (2), at the 1st stage of its run, the removal efficiencies of ethanol, hydrogen sulfide and toluene continued to be 10%, 97% and 100%, respectively. However, at 2nd stage of its run their removal efficiencies became 5%, 95% and 2~3%, respectively, which showed that the removal efficiencies of ethanol and hydrogen sulfide decreased insignificantly while the removal efficiency of toluene dropped significantly from the perfect elimination. Moreover, the reflector film did not affect the performance of photocatalytic reactor system (2) at all. Therefore the removal of ethanol, hydrogen sulfide and toluene by photocatalytic reactor system (2) was mainly attributed to hydrophobic adsorption of its nonwoven filter media and its extent of photocatalytic removal turned out to be negligible, compared to that of photocatalytic reactor system (1).

Characterization of Repeated Deactivation and Subsequent Re-activation of Photocatalyst Used in Two Alternatively-operating UV/photocatalytic Reactors of Waste-air Treating System (교대로 운전되는 두 개의 UV/광촉매반응기로 구성된 폐가스 처리시스템에서의 광촉매의 비활성화 및 재생 특성)

  • Lee, Eun Ju;Chung, Chan Hong;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.584-595
    • /
    • 2021
  • In this study, the correlation between operating stages of waste air-treating system composed of two alternatively-operating UV/photocatalytic reactors, and the deactivation of photocatalyst used in each operating stage, was investigated by instrumental analysis thereon. The repeated deactivation and subsequent re-generation of photocatalyst used in the waste air treating system of previous investigation performed by Lee and Lim (Korean Chem. Eng. Research, 59(4), 574-583(2021)), were characterized on virgin photocatalyst-carrying porous SiO2 media (A4), used photocatalyst-carrying porous SiO2 media (A1, A2 and A3) collected from the corresponding photocatalytic reactor upon 1st, 2nd, and 3rd run, respectively, regenerated photocatalyst-carrying porous SiO2 media upon 1 time-run (AD1) and 3 times regenerated photocatalyst-carrying porous SiO2 media upon 3 time-runs (AD3) by instrumental analysis including BET analysis, SEM, XPS, SEM-EDS and FT-IR. As a result, the proper regeneration-temperature for deactivated photocatalyst to be regenerated several times (more than 3 times), was suggested below 200 ℃. Such temperature of deactivated photocatalyst-regeneration was almost consistent to the one, according to BET analysis, at which tiny nano-pores blocked by adsorbed ethanol-oxidative and degraded intermediates (AEODI), were regenerated to be reopened through almost complete mineralization of AEODI. In particular, the results of XPS analysis indicated an incurrence of insignificant deactivation of photocatalysis upon 1st run of UV/photocatalytic reactor (A or C) of the previous investigation. In addition, the results of XPS analysis were consistent with the experimental results of the previous investigation in that 1) deactivation of photocatalyst incurred during 2nd run of the UV/photocatalytic reactor (A or C) resulted in decreased removal efficiency, by ca. 5% and 5%, of ethanol and hydrogen sulfide, respectively, compared with its 1st run; 2) there was insignificant difference between the removal efficiencies of its 2nd run and 3rd run. Furthermore, the removal efficiencies of ethanol and hydrogen sulfide for hypothetical 4th run of photocatalytic reactor in the previous investigation, using AD3, were expected to decrease, compared with its 3rd run, by much more than those for 2nd run in the previous investigation did, compared with its 1st run.