• Title/Summary/Keyword: 광중합 수축

Search Result 50, Processing Time 0.033 seconds

Polymerization Shrinkage Distribution of a Dental Composite during Dental Restoration Observed by Digital Image Correlation Method (디지털 이미지 상관법을 이용한 치과용 복합레진의 수복 시 중합수축분포 관찰)

  • Park, Jung-Hoon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.393-398
    • /
    • 2017
  • The shrinkage distribution of a dental composite (Clearfil AP-X, Kuraray, Japan) used for dental restoration was observed using a digital image correlation method. In order to analyze the shrinkage distribution formed during and after light irradiation, digital images were taken with different photographing conditions for each period. Optimal photographing conditions during LED irradiation were obtained through a preliminary experiment in which the exposure time was applied from 0.15 ms to 0.55 ms in 0.05 ms intervals. The DIC analysis results showed that the strain was non-uniform. For the initial 20 s of light irradiation the composite resin shrank to the level of 50~60% of the final curing shrinkage. Such large shrinkage amount of the composite resin lump affected the tensile stress concentration near the adhesive region between the composite resin and the substrate.

A NEW METHOD TO MEASURE THE LINEAR POLYMERIZATION SHRINKAGE OF COMPOSITES USING A PARTICLE TRACKING METHOD WITH COMPUTER VISION (컴퓨터 시각과 입자 추적 방법을 이용한 복합레진의 선형중합수축 측정의 새로운 방법)

  • Lee, In-Bog;Min, Sun-Hong;Seo, Deog-Gyu;Kim, Sun-Young;Kwon, Young-Chul
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.3
    • /
    • pp.180-187
    • /
    • 2010
  • Since the introduction of restorative dental composites, their physical properties have been significantly improved. However, polymerization shrinkage is still a major drawback. Many efforts have been made to develop a low shrinking composite, and silorane-based composites have recently been introduced into the market. In addition, many different methods have been developed to measure the polymerization shrinkage. In this study, we developed a new method to measure the linear polymerization shrinkage of composites without direct contact to a specimen using a particle tracking method with computer vision. The shrinkage kinetics of a commercial silorane-based composite (P90) and two conventional methacrylate-based composites (Z250 and Z350) were investigated and compared. The results were as follows: 1. The linear shrinkage of composites was 0.33-1.41%. Shrinkage was lowest for the silorane-based (P90) composite, and highest for the flowable Z350 composite. 2. The new instrument was able to measure the true linear shrinkage of composites in real time without sensitivity to the specimen preparation and geometry.

POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN USING DOUBLE CURING UNIT SYSTEM (Double curing unit system을 이용한 복합 레진의 광중합 수축에 관한 연구)

  • Han, Mi-Ran;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.2
    • /
    • pp.189-198
    • /
    • 2009
  • As a part of an effort to minimize the polymerization shrinkage which is considered to be a major cause of failed bonds to tooth, newly designed 'Double LED system' was tested in the present study. Analyses were performed on the pattern of micro-leakage and the changes of strain which have occurred during the polymerization process. The results can be summarized as follows: 1. In the strain change, dramatic increase was observed with initiation of polymerization which was followed by subsequent gradual decrease with elapse of time in both the single LED system and double LED system. 2. The single LED system were shown to develop and maintain the maximum stress more than double LED system(p<0.05). 3. Less micro-leakage was found in the double LED system than in the single LED system(p<0.05). From the above-mentioned results, the double LED system can be a very useful tool in a sense of reducing polymerization shrinkage when compared to the single LED system. However, practical problems such as size of curing unit and its application method with its light intensity should be solved before its clinical application.

  • PDF

EFFECT OF SOFT-START CURING ON THE CONTRACTION STRESS OF COMPOSITE RESIN RESTORATION POLYMERIZED WITH LED AND PLASMA CURING UNIT (LED와 플라즈마 광원의 완속기시 광중합 방식이 복합레진의 수축응력에 미치는 영향)

  • Chung, Yang-Seok;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.4
    • /
    • pp.623-631
    • /
    • 2007
  • Effect of Soft-start curing on the contraction stress of composite resin restoration polymerized with LED and plasma curing unit The purpose of this study was to evaluate the influence of soft-start light curing on contraction stress and hardness of composite resin. Composite resin (Filtek $Z-250^{TM}$, 3M ESPE, USA) was cured using the one-step continuous curing method with three difference light sources ; conventional halogen light ($XL3000^{TM}$, 3M ESPE, USA) cure for 40 seconds at $400 mw/cm^2$, LED light (Elipar Freelight $2^{TM}$, 3M-ESPE, USA) cure for 20 seconds at $800\;mW/cm^2$ a and plasma arc light ($Flipo^{TM}$, LOKKI, France) cure for 12 seconds at $1300 mW/cm^2$. For the soft-start curing method ; LED light (Elipar Freelight $2^{TM}$, 3M-ESPE, USA) cure exponential increase with 5 seconds followed by 17 seconds at $800\;mW/cm^2$ and plasma arc light ($Flipo^{TM}$, LOKKI, France) cure 2 seconds light exposure at $650\;mW/cm^2$ followed by 11 seconds at $1300\;mW/cm^2$. The strain guage method was used for determination of polymerization contraction. Measurements were recorded at each 2 second for the total of 800 seconds including the periods of light application. Obtained data were analyzed statically using Repeated measures ANOVA, One way ANOVA, and Tukey test. The results of present study can be summarized as follows: 1. Composite resin restoration showed transient expansion just after irradiation of curing light. Contraction stress was increased rapidly at the early phase of polymerization and reduced slowly as time elapsed (P<0.05). 2. Contraction stress was not revealed significant difference between Halogen curing light groups and LED and Plasma Light curing with soft-start group (P>0.05). 3. LED and Plasma Light curing with soft-start showed lower contraction stress than the one-step continuous light curing (P<0.05).

  • PDF

INFLUENCE OF IRRADIATION MODES ON THE MICROHARDNESS AND THE POLYMERIZATION CONTRACTION OF COMPOSITE RESIN POLYMERIZED WITH LED CURING UNIT (LED 광중합기의 조사 mode가 복합레진의 미세경도 및 수축응력에 미치는 영향)

  • Park, In-Ho;Oh, You-Hyang;Lee, Nan-Young;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.312-320
    • /
    • 2005
  • The purpose of this study was to evaluate the polymerization contraction and the microhardness of compostie resin($Supreme^{(R)}$, Filtek $Flow^{(R)}$, 3M-ESPE, USA) according to irradiation modes of LED curing unit(Elipar $Freelight^{(R)}$, 3M-ESPE, USA). The strain guage method was used for determination of polymerization contraction. Sample were divided by 6 groups according to curing modes and filling method. Group A: $Supreme^{(R)}$, Filtek $Flow^{(R)}$ lining, 10seconds curing, Group B: $Supreme^{(R)}$, Filtek $Flow^{(R)}$ lining, 15seconds curing, Group C: $Supreme^{(R)}$, Filtek $Flow^{(R)}$ lining, 15seconds soft start curing, Group D: $Supreme^{(R)}$ only, 10seconds curing, Group E: $Supreme^{(R)}$ only, 15seconds curing, Group F: $Supreme^{(R)}$ only, 15seconds soft start curing. Preparations of acrylic molds were followed by filling and curing. Strain guage attached to each sample were connected to a strainmeter. Measurements were recorded at each second for the total of 10 minutes including the periods of light application. And microhardness of each group after 24hours from light irradiation were measured. Obtained data were analyzed statistically using Repeated measures ANOVA and Tukey test. The results of the present study are as follows: 1. In flowable resin liner group, soft start curing group was not found decrease of polymerization contraction. But, In Supreme only filling group, the lowest polymeriation contraction was found in soft start curing group. 2. 10 seconds curing group showed statistically significant reduction of polymerization contraction compared with 15 seconds curing group(p<0.05). 3. The microhardness values of each group not revealed significant difference(p>0.05). But, lower surface microhardness was not reached 80% of upper surface microhardness.

  • PDF

A STUDY ON THE POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN ACCORDING TO VARIOUS LIGHT-CURING METHODS (광조사 방법에 따른 복합레진의 중합수축에 관한 연구)

  • Kwon, Oh-Jin;Kim, Jong-Soo;Kwon, Soon-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.102-109
    • /
    • 2003
  • The purpose of this study was to evaluate the linear polymerization shrinkage(%) and microhardness of composite resin(Z-100, 3M, USA) according to 2-step light curing method. Conventional light curing unit(Curing Light 2500, 3M USA) and 2-step light curing unit(Elipar Highlight, ESPE, Germany) were used as light source. The strain gauge method was used for determination of polymerization shrinkage(%). Samples were divided by 3 groups according to light curing methods (Group I : $450mW/cm^2$, 40sec, Group II : $650mW/cm^2$, 40sec, Group III : $150mW/cm^2$, 10sec & $650mW/cm^2$, 30sec). Preparations of acrylic molds were followed by filling and curing. Strain gauges attached to each sample were connected to a strainmeter. Measurements were recorded at each second for the total of 10 minutes including the periods of light application. And microhardness of each group after 24hours from light irradiation were measured. Obtained data were analyzed statistically using Ore-way ANOVA and/or Scheffe test. The results of the present study can be summarized as follows: 1. Composite resin in acrylic molds showed the initial expansion at the early phase of polymerization. This was followed by the contraction with the rapid increase in volume during the first 60 seconds and gradually diminished as curing process continued. 2. The lowest linear polymerization shrinkage(%) was found in group III followed by group I, II during the measuring periods. 3. Group III using 2-step curing method showed statistically significant reduction of linear polymerization shrinkage(%) compared with group I, II at 1 minute and 10 minutes from light irradiation(p<0.05). 4. The microhardness values of each group not revealed significant difference.

  • PDF

A STUDY ON THE EVALUATION OF POLYMERIZATION SHRINKAGE OF COMPOSITE AND COMPOMER USING STRAIN GAUGE METHOD (스트레인 게이지법을 이용한 복합레진과 컴포머의 중합수축 평가에 관한 연구)

  • Kim, Yeun-Chul;Kim, Jong-Soo;Kwon, Soon-Won;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.1
    • /
    • pp.19-29
    • /
    • 2002
  • The purpose of this study was to compare the polymerization shrinkage and the compressive strength of composite and compomer cured with two different light sources ; conventional halogen-light curing unit and recently-developed plasma arc curing unit. The 'strain gauge method' was used for determination of polymerization shrinkage and the compressive strength was measured by universal testing machine. The results of the present study can be summarized as follows: 1. Filling materials in polyethylene molds showed the initial expansion in the early phase of polymerization. This was followed by the rapid contraction in volume during the first 60 seconds and gradually diminished as curing process continued. 2. The polymerization shrinkage in tooth samples was generally lower than in the mold samples. 3. The generally lower amount of linear polymerization shrinkage was observed in compomer and plasma arc curing unit group when compared to composite and conventional curing unit. 4. The higher compressive strength values was found in composite groups regardless curing methods. The results of this study strongly support the application of plasma arc system and fluoride-containing compomer in the field of clinical pediatric dentistry claiming its effectiveness in curing the esthetic dental materials and the anticariogenic capacity.

  • PDF

Polymerization Shrinkage Behavior Measured by Digital Image Correlation for Methacrylate-based and Silorane-based Composites During Dental Restoration (디지털 이미지 상관법을 이용한 Methacrylate기질과 Silorane기질 복합레진의 치아 수복 시 중합수축거동)

  • Park, Jung-Hoon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.125-132
    • /
    • 2020
  • The polymerization shrinkage behavior of dimethacrylate-based composite (Clearfil AP-X, Kuraray) and silorane-based composite (Filtek P90, 3M ESPE) used for dental composite restorations was measured using digital image correlation method. The stress distribution on the surface of specimen was calculated by finite element analysis with equivalent elastic modulus and was compared with the measured shrinkage distribution. Camera images were monitored by a CCD camera during and after the irradiation of light. As a result of the DIC analysis, a non-uniform shrinkage distribution was observed in both composite resins, and the resin core inside the ring specimen had free flowability, leading to in greater shrinkage strain than the resin/ring interfacial region. It was observed that as the distance from the center of the resin increased, the radial average shrinkage strain decreased. The radial average shrinkage strain during light irradiation occurred to be 33% for P90 and 57% for AP-X of the entire strain at the end of the test. The shrinkage behavior of P90 and AP-X was measured to be significantly different from each other during light irradiation. In the resin near the resin/ring interface, it was confirmed that the tensile strain rapidly formed to increase after light irradiation, causing a tensile stressed, interface weak.

Correlation between Linear polymerization shrinkage & tooth cuspal deflection (교두변위와 선수축량의 연관성 분석)

  • Lee, Soon-Young;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.6
    • /
    • pp.442-449
    • /
    • 2005
  • The purpose of the present study was to evaluate the relationship between the amount of cuspal deflection and linear polymerization shrinkage in resin composite and polyacid modified resin composite, For cuspal defelction and shrinkage measurement, Dyract AP, Compoglass F, Z100, Surefil. Pyramid, Synergy Compact, Heliomolar and Heliomolar HB were used. For measuring polymerization shrinkage, a custom made linometer (R&B, Daejon, Korea) was used The amount of shrinkage among materials was compared using One-way ANOVA analysis and Tukey's test at the $95\%$ of confidence level For measuring cuspal deflection of teeth, standardized MOD cavities were prepared in extracted maxillary premolars. After a self-etching adhesive was applied, cavities were bulk filled with one of the felling materials. Fifteen teeth were used for each material. Cuspal deflection was measured by a custom made cuspal-deflection measuring device. One-way ANOVA analysis and Tukey's test were used to determine differences between the materials at the $95\%$ of confidence level, Correlation of polymerization shrinkage and cuspal deflection were analyzed by regression analysis. The amount of polymerization shrinkage from least to greatest was Heliomolar, Surefil < Heliomolar HB < Z100, Synergy Compact < Dyract AP < Pyramid, Compoglass F (p<0.05). The amount of cuspal deflection from least to greatest was Z100, Heliomolar, Heliomolar HB, Synergy Compact Surefil < Compoglass F < Pyramid, Dyract AP (p < 0.05). The amount of polymerization shrinkage and cuspal deflection showed a correlation (p<0.001).

COMPARISON OF POLYMERIZATION SHRINKAGE AND STRAIN STRESS OF SEVERAL COMPOSITE RESINS USING STRAIN GUAGE (스트레인 게이지를 이용한 수종의 복합레진의 중합수축 및 수축응력의 비교)

  • Kim, Young-Kwang;Yoo, Seung-Hoon;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.3
    • /
    • pp.516-526
    • /
    • 2004
  • Polymerization shrinkage of photoinitiation type composite resin cause several clinical problems. The purpose of this study was to evaluate the shrinkage strain stress, linear polymerization shrinkage, compressive strength and microhardness of recently developed composite resins. The composite resins were divided into four groups according to the contents of matrix and filler type. Group I : $Denfil^{TM}$(Vericom, Korea) with conventional matrix, Group II : $Charmfil^{(R)}$(Dentkist, Korea) with microfiller and nanofller mixture, Group III : $Filtek^{TM}$ Z250(3M-ESPE, USA) TEGDMA replaced by UDMA and Bis-EMA(6) in the matrix, and Group IV : $Filtek^{TM}$ Supreme(3M-ESPE, USA) using pure nanofiller. Preparation of acrylic molds were followed by filling and curing with light gun. Strain gauges were attached to each sample and the leads were connected to a strainmeter. With strainmeter shrinkage strain stress and linear polymerization shrinkage was measured for 10 minutes. The data detected at 1 minute and 10 minutes were analysed statistically with ONE-way ANOVA test. To evaluate the mechanical properties of tested materials, compressive hardness test and microhardness test were also rendered. The results can be summarized as follows : 1. Filling materials in acrylic molds showed initial temporary expansion in the early phase of polymerization. This was followed by contraction with the rapid increase in strain stress during the first 1 minute and gradually decreased during post-gel shrinkage phase. After 1 minute, there's no statistical differences of strain stress between groups. The highest strain stress was found in group IV and followed by group III, I, II at 10 minutes-measurement(p>.05). In regression analysis of strain stress, group III showed minimal inclination and followed by group II, I, IV during 1 minute. 2. In linear polymerization shrinkage test, the composite resins in every group showed initial increase of shrinkage velocity during the first 1 minute, followed by gradually decrease of shrinkage velocity. After 1 minute, group IV and group III showed statistical difference(p<.05). After 10 minutes, there were statistical differences between group IV and group I, III(p<.05) and between group II and group III(p<.05). In regression analysis of linear polymerization shrinkage, group II showed minimal inclination and followed by group IV, III, I during 1 minute. 3. In compressive strength test, group III showed the highest strength and followed by group II, IV, I. There were statistical differences between group III and group IV, I(p<.05). 4. In microhardness test, upper surfaces showed higher value than lower surfaces in every group(p<.05).

  • PDF