• Title/Summary/Keyword: 광음향

Search Result 64, Processing Time 0.019 seconds

A Study on the Physical Properties of Compound Semiconducts by Photoacoustic Spectroscopy (광음향효과에 의한 화합물 반도체의 물성연구)

  • 윤화중
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1984.12a
    • /
    • pp.27-32
    • /
    • 1984
  • When chopped light inpinges on some condenced matters such as HgS, HgI2 and GaSe semiconductors, in an enclosed cell, the acoustic signals are produced within the cell. These acoustic signals were detected by using a gas-phase microphone in order to investigate the physical properties of the samples. In order to carry out investigation, PA-cell was first designed and made so as to produce higher sensitivity to acoustic signals. Second, an analysis of the photoacoustic spectrum of the various compounds was carried out to obtain the intensity of the PA-signal in terms of light wavelength and to calculate the energy band gaps occuring according to energy transitions. The agreement between the results obtained by this conventional PAS technique and the results obtained by the optical spectrum method was good. In additional analysis conducted on the basis of the R-G theory and the Sze theory are capable of determining the characteristics of energy transition of semiconductors.

  • PDF

Frequency and Power Stabilization of $CO_2$ Laser Using a Photoacoustic Effect (광음향효과에 의한 $CO_2$ 레이저 주파수 및 출력 안정화 방법)

  • Choi Jong-Woon;Yu Moon-Jong;Choi Sung-Woong;Seo Ho-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.11
    • /
    • pp.583-588
    • /
    • 2004
  • We stabilized the frequency and power of a high voltage excited CW CO2 laser on the peak of the Doppler broadened gain curve using the photoacoustic effect generated from the laser itself. The photoacoustic signal is directly coupled from an radio frequency discharge chamber via a capacitor microphone into a detector and a lock-in stabilizer. The frequency stability is estimated to be better then 1.2×10/sup -7/ at the transition P(20) line. The stabilized output power variation was reduced to from 77 % to 3.3 %.

Partial Discharge Monitoring Technology based on Distributed Acoustic Sensing (분포형 광음향센싱 기반 부분방전 모니터링 기술 연구)

  • Huioon, Kim;Joo-young, Lee;Hyoyoung, Jung;Young Ho, Kim;Myoung Jin, Kim
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.441-447
    • /
    • 2022
  • This study describes a novel method for detecting and measuring partial discharge (PD) on an electrical facility such as an insulated power cable or switchgear using fiber optic sensing technology, and a distributed acoustic sensing (DAS) system. This method has distinct advantages over traditional PD sensing techniques based on an electrical method, including immunity to electromagnetic interference (EMI), long range detection, simultaneous detection for multiple points, and exact location. In this study, we present a DAS system for PD detection with performance evaluation and experimental results in a simulated environment. The results show that the system can be applied to PD detection.

Aerosol Light Absorption and Scattering Coefficient Measurements with a Photoacoustic and Nephelometric Spectrometer (광음향 및 네펠로미터 방식을 이용한 에어로졸 흡수 및 산란계수 측정)

  • Kim, Ji-Hyoung;Kim, Sang-Woo;Heo, Junghwa;Nam, Jihyun;Kim, Man-Hae;Yu, Yung-Suk;Lim, Han-Chul;Lee, Chulkyu;Heo, Bok-Haeng;Yoon, Soon-Chang
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.185-191
    • /
    • 2015
  • Ambient measurements of aerosol light absorption (${\sigma}_a$) and scattering coefficients (${\sigma}_s$) were done at Gosan climate observatory during summer 2008 using a 3-wavelength photoacoustic soot spectrometer (PASS). PASS was deployed photoacoustic method for light absorption and integrated nephelometry for light scattering measurements. The ${\sigma}_a$ and ${\sigma}_s$ from PASS were compared with those from co-located aethalometer and nephelometer measurements. The aethalometer measurements of ${\sigma}_a$ correlated reasonably well with photoacoustic measurements, but the slope of the linear fitting line indicated the PASS measurement values of ${\sigma}_a$ were larger by a factor of 1.53. The nephelometer measurement values of ${\sigma}_s$ correlated very well with PASS measurements of ${\sigma}_s$, with a slope of 1.12 and a small offset. Comparing to the aethalometer measurements, the photoacoustic measurements of ${\sigma}_a$ didn't exhibit a significant (i.e., the ratio between aethalometer and PASS increased) change with increasing relative humidity (RH). The ratio of ${\sigma}_s$ between nephelometer and PASS increased with increasing RH, especially when the RH increased beyond 80%. This apparent increase in ${\sigma}_s$ with RH may be due to the contribution of hygroscopic growth of aerosols.