• Title/Summary/Keyword: 광역 사면안정해석

Search Result 11, Processing Time 0.029 seconds

Large-Scale Slope Stability Analysis Using Climate Change Scenario (2): Analysis of Application Results (기후변화 시나리오를 이용한 광역 사면안정 해석(2): 결과분석)

  • Oh, Sung-Ryul;Lee, Gi-Ha;Choi, Byoung-Seub;Lee, Kun-Hyuk;Kwon, Hyun-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.1-19
    • /
    • 2014
  • This study aims to assess the slope stability variation of Jeonbuk drainage areas by RCM model outputs based on A1B climate change scenario and infinite slope stability model based on the previous research by Choi et al.(2013). For a large-scale slope stability analysis, we developed a GIS-based database regarding topographic, geologic and forestry parameters and also calculated daily maximum rainfall for the study period(1971~2100). Then, we assess slope stability variation of the 20 sub-catchments of Jeonbuk under the climate change scenario. The results show that the areal-average value of safety factor was estimated at 1.36(moderately stable) in spite of annual rainfall increase in the future. In addition, 7 sub-catchments became worse and 5 sub-catchments became better than the present period(1971~2000) in terms of safety factor in the future.

Stability Analysis of Landslides using a Probabilistic Analysis Method in the Boeun Area (확률론적 해석기법을 이용한 보은지역의 사면재해 안정성분석)

  • Jeong, Nam-Soo;You, Kwang-ho;Park, Hyuck-Jin
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.247-257
    • /
    • 2011
  • In this study the infinite slope model, one of the physical landslide models has been suggested to evaluate the susceptibility of the landslide. However, applying the infinite slope model in regional study area can be difficult or impossible because of the difficulties in obtaining and processing of large spatial data sets. With limited site investigation data, uncertainties were inevitably involved with. Therefore, the probabilistic analysis method such as Monte Carlo simulation and the GIS based infinite slope stability model have been used to evaluate the probability of failure. The proposed approach has been applied to practical example. The study area in Boeun area been selected since the area has been experienced tremendous amount of landslide occurrence. The geometric characteristics of the slope and the mechanical properties of soils like to friction angle and cohesion were obtained. In addition, coefficient of variation (COV) values in the uncertain parameters were varied from 10% to 30% in order to evaluate the effect of the uncertainty. The analysis results showed that the probabilistic analysis method can reduce the effect of uncertainty involved in input parameters.

A Risk Evaluation Method of Slope Failure Due to Rainfall using a Digital Terrain Model (수치지형모델을 이용한 강우시 사면 붕괴 위험도 평가에 관한 제안)

  • Chae, JongGil;Jung, MinSu;Torii, Nobuyuki;Okimura, Takashi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.219-229
    • /
    • 2010
  • Slope failure in South Korea generally occurs by the localized heavy rain in a rainy season and typhoon, and it annually causes huge losses of both life and property because nearly 70% of territory in South Korea is covered with mountains. It is required to measure the risk of slope failure quantitatively before proper prevention methods are provided. However, there is no way to estimate the risk based on realtime rainfall, geological characteristics, and geotechnical engineering properties. This study presents the development of digital terrion model to predict slope stability using infinite slope stability theory combined with temporal groundwater change. Case studies were performed to investigate factors to affect slope stability in Japan.

Large-Scale Slope Stability Analysis Using Climate Change Scenario (1): Methodologies (기후변화 시나리오를 이용한 광역 사면안정 해석(1): 방법론)

  • Choi, Byoung-Seub;Oh, Sung-Ryul;Lee, Kun-Hyuk;Lee, Gi-Ha;Kwon, Hyun-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.193-210
    • /
    • 2013
  • This study aims to assess the slope stability variation of Jeollabuk-do drainage areas by RCM model outputs based on A1B climate change scenario and infinite slope stability model based on the specific catchment area concept. For this objective, we downscaled RCM data in time and space: from watershed scale to rain gauge scale in space and from monthly data to daily data in time and also developed the GIS-based infinite slope stability model based on the concept of specific catchment area to calculate spatially-distributed wetness index. For model parameterization, topographic, geologic, forestry digital map were used and model parameters were set up in format of grid cells($90m{\times}90m$). Finally, we applied the future daily rainfall data to the infinite slope stability model and then assess slope stability variation under the climate change scenario. This research consists of two papers: the first paper focuses on the methodologies of climate change scenario preparation and infinite slope stability model development.

Estimation of Landslide Risk based on Infinity Flow Direction (무한방향흐름기법을 이용한 산사태 위험도 평가)

  • Oh, Sewook;Lee, Giha;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.5-18
    • /
    • 2019
  • In this study, it was conducted a broad-area landslide analysis for the entire area of Kyungsangbuk-do Province based on spatially-distributed wetness index and root reinforcement infinity slope stability theory. Specifically, digital map, soil map and forest map were used to extract topological and geological parameters, and to build spatially-distributed database at $10m{\times}10m$ resolution. Infinity flow direction method was used for rain catchment area to produce spatially-distributed wetness index. The safety level that indicates risk of a broad-area landslide was classified into four groups. The result showed that areas with a high estimated risk of a landslide coincided with areas that recently went through an actual landslide, including Bonghwa and Gimcheon, and unstable areas were clustered around mountainous areas. A comparison between the estimation result and the records of actual landslide showed that the analysis model is effective for estimating a risk of a broad-area landslide based on accumulation of reasonable parameters.

Analysis on erosion characteristics according to geomorphologic factor thresholds in the watershed (유역내 지형학적 인자의 임계특성에 따른 침식특성 분석)

  • Oh, Sung Ryul;Yoon, Eui Hyeok;Jung, Kwan Soo;Kim, Jeong Yup;Choi, Yong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.628-628
    • /
    • 2015
  • 유역의 형상은 강우, 산사태 등과 같은 지배적인 침식작용과 더불어 지형 지질학적 요인들에 의해 결정되어 진다. 그러므로 유역형상에 대한 공간특성 분석을 위해서는 지형학적 요인과 다양한 침식작용에 대한 분석이 필요하다. 국내 외 많은 연구결과에 의하면 지형학적 인자에 의한 침식 형태는 국부경사와 집수면적의 크기에 의해 다양한 구간으로 나뉘며, 그 특성에 따라 지표침식, 세굴, 산사태 등으로 구분되는 것으로 연구된 바 있다. 일례로 유역 내 세굴과 관련된 지배인자는 집수면적보다는 국부경사에 반대로 지표침식, 산사태는 국부경사보다는 집수면적의 크기에 따라 영향을 받는다. 따라서 지형학적 인자(국부경사, 집수면적)의 임계치(threshold) 산출을 통해 침식특성(불안정지역)을 검토할 수 있으며, 이에 대한 물리적 검증은 여러 연구를 통해 물질플럭스(유량, 에너지)에 대한 Power Law로써 검증된바 있다. 본 연구에서는 이러한 지형학적 침식특성 분석을 위하여 2006년 집중호우에 의해 광역적 산사태가 발생한 강원도 평창군 진부면 일대의 $10m{\times}10m$ DEM로부터 국부경사, 집수면적을 산출하고 경사-면적한계곡선(Slope-Area Threshold Curve, SATC), 배수면적 확률분포곡선(Probability distribution of Drain Areas Curve, PDAC), 에너지지수 확률분포곡선(Probability distribution of Energy Index Curve, PEIC)를 실제 산사태지점과 중첩하여 도시하였다. 그 결과, 특정 임계구간(Threshold Area, Unstable area, 2~3권역)내에서 산사태 발생지점이 분포하는 것으로 분석되었다. 이를 통해 지형학적 인자만을 고려하여 미계측 유역에 대한 잠재적 불안정지역의 판별이 가능할 것으로 판단되며, 추후 광역적 사면안정해석에 적용 가능할 것으로 판단된다.

  • PDF

Study of Structurally Controlled Slope Instability: Pibanryeong, Chungbuk, S. Korea (지질 구조에 의한 사면의 불안정성에 관한 연구: 충북 피반령 부근)

  • Cheong, Sang-Won;Choi, Byoung-Ryol
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.459-470
    • /
    • 2008
  • Types of slope failure related to cut slope stability are interpreted through case analyses, and also factors affecting structurally controlled instability investigated, which are developed by geologic structures along a national road No. 25 across the Cheongwon and Boeun-Guns, Chungbuk. Engineering properties such as orientation, persistence, roughness and uniaxial compressive strength of joints are analyzed by square-inventory method in three areas with well-preserved outcrops. The study area is located in Ogcheon folded bet, and are composed of quartz-schist and quartzite in the Midongsan Formation and phyllite in the Ungyori Formation. Flexural beds by folding, schistosity and cleavage besides joints are developed due to slight metamorphism. Various types of joints developed by folding are formed such as strike-parallel, strike-perpendicular, wedge and wrench joint sets by both initially regional and later superposed folding. Factors of slope instability are created by crossing the orientations of joint, cleavage, bedding and slope one another. In the case that the orientation of a slope is coincident with one of beds, factors causing large-scale failure including plane failure are increased greatly. Also in the region that orientations of the slope and bed are crossed each other at high angle, only local and minor failures are shown in the slope.

Seismic Attribute Analysis of the Indicators for the Occurrence of Gas Hydrate in the Northwestern Area of the Ulleung Basin, East Sea (동해 울릉분지 북서지역 가스하이드레이트 부존 지시자의 탄성파 속성 분석)

  • Kim, Kyoung Jin;Yi, Bo Yeon;Kang, Nyeon Keon;Yoo, Dong Geun;Shin, Kook Sun;Cho, Young Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.216-230
    • /
    • 2014
  • Based on the interpretation of 3D seismic profiles acquired in the northwestern area of the Ulleung Basin, East Sea, the shallow sediments consist of five seismic units separated by regional reflectors. An anticline is present in the study area that documents activity of many faults. Bottom simulating reflectors are characterized by high RMS amplitude. Acoustic blanking with low RMS amplitude is distinctively recognized in the gas hydrate stability zone. Seismic attribute analysis shows that if gas hydrates are underlain by free gas, the high reflection strength and the low instantaneous frequency are displayed below the boundary between them. Whereas, if not, the reflection strength is low and instantaneous frequency is high continuously below the gas hydrate zone. Based on the spectral decomposition of the bottom simulating reflector, the high envelope at the specific high frequency range indicates the generation of the tuning effect due to the lower free gas content. Four models for the occurrence of the gas hydrate are suggested considering the slope of sedimentary layers as well as the presence of gas hydrate or free gas.

Correlation of Tectolineaments and Discontinuities in connection with Slope Failure (사면 붕괴와 관련 구조선 분석과 불연속면의 상관성 연구)

  • Baek, Yong;Koo, Ho-Bon;Kim, Seung-Hyun
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.303-313
    • /
    • 2001
  • A cut-slope near Guam-Ri Hwado-Eup Namyangju-Si Kyunggi-Do collapsed during a heavy rainfall over 400mm at 28th of August 2000. The cut-slope collapse reportedly developed mainly by block sliding along a set of discontinuities, although slope angle of the cut-slope was 40$^{\circ}$(1:1.2) that agrees with the road construction criteria. This study aims to analyze differences and correlations among several data-collecting methods limited to discontinuity analysis related with cut-slope collapse. This study started with analysing discontinuity surface characteristics, geology of the country rock and orientations of the discontinuities directly related with the collapse. Analysis of aerial photos around the study area provided regional lineament data, and discontinuity plane description and measurements were collected from core logging and Borehole Image Processing System (BIPS). Spearmans correlation ranking coefficient method was used to get correlation of discontinuity planes according to analysis methods. The result suggests that the correlation coefficient is ${\gamma}_s$ = 0.91 Plus, stability analysis of discontinuity plane orientation data using equal-area stereonet revealed that the study area is unstable to planar failure. This study suggests that the cut-slope angles currently applied should be shallower and that significant attention is required to orientation distribution of discontinuities existed in cut-slopes studies.

  • PDF

Slope Stability in Logging Areas Using Unmanned Aerial Vehicle Imaging (무인항공기 영상 촬영을 활용한 벌목지역의 비탈면 안정성 평가)

  • Kim, Tae-Wan;Yoo, Hyung-Sik;Park, Seok-In;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.39-47
    • /
    • 2022
  • This study aims at evaluating the stability of disaster risks, such as schools, apartments, and geotechnical structures located around slopes in urban areas. The research conducted an aerial photography analysis on where the slope of the retaining wall behind 𐩒𐩒 High School in Gwangju collapsed in August 2018 due to heavy rain. In general, the overflow of rainwater has been managed through drainage channels around slopes during the rainy season, and the surface flow of rainfall was limited due to the presence of dense forests in the area. However, when the slope collapsed, a lot of water flowed out of the ground, and the saturated surface layer ground was destroyed. To analyze the cause, the changed terrain of the upper slope area, which could not be directly identified, was photographed using unmanned aerial vehicles. Digital Elevation Model by unmanned aerial vehicle shooting was performed by analyzing the slope map, calculating the direction of rainfall and the length and width of water-logged areas. The change in the instability of the slope over time due to a 10-day rainfall was also analyzed through numerical analysis.