• 제목/요약/키워드: 광섬유진동센서

검색결과 95건 처리시간 0.018초

부착식 텐던의 유효 긴장력 평가를 위한 최적의 매개변수 결정에 관한 연구 (A Study on the Determination of the Optimal Parameter for the Evaluation of the Effective Prestress Force on the Bonded Tendon)

  • 장정범;이홍표;황경민;송영철
    • 대한토목학회논문집
    • /
    • 제30권2A호
    • /
    • pp.161-168
    • /
    • 2010
  • 국내 가동 중 일부 원전의 원자로건물에 부착식 텐던이 설치되어 있고, 부착식 텐던에 대한 유효 긴장력 평가는 이들 원전의 계속운전을 위한 주요 현안으로 부각되고 있다. 따라서, 본 연구에서는 System Identification 기법을 이용한 부착식 텐던의 유효 긴장력 평가를 위하여, SI 기법에 유효한 주요 매개변수의 영향 평가를 수행하고 최적의 매개변수를 도출하였다. 본 연구를 위하여, 원자로건물 벽체의 1/5 축소모형 시험체를 제작하였고, 유효 긴장력과 고유진동수 및 변위와의 상관성을 분석하기 위하여 Impact test, SIMO sine sweep test 및 광섬유센서와 변위계에 의한 휨시험을 수행하였다. 시험결과, 고유진동수와 변위 모두 유효 긴장력과 좋은 상관성을 지니는 것으로 나타나, 이들 매개변수 모두 SI 기법의 입력자료로 활용되어 부착식 텐던의 유효 긴장력 예측이 가능한 것으로 분석되었다.

편광유지 광자결정 광섬유 기반 편광 간섭형 진동 센서 (Study on Fiber Polarimetric Vibration Sensor Based on Polarization-Maintaining Photonic Crystal Fiber)

  • 김영석;박경수;이용욱
    • 조명전기설비학회논문지
    • /
    • 제29권5호
    • /
    • pp.13-18
    • /
    • 2015
  • In this paper, we implemented a polarimetric vibration sensor using a Sagnac birefringence interferometer composed of polarization-maintaining photonic crystal fiber(PM-PCF). By changing the amplitude and frequency of vibration applied to PM-PCF employed as the sensor head of the proposed sensor, sensor responses to various types of vibration were investigated. First, the vibration characteristic of the sensor was explored for a single frequency in a frequency range from 1 to 3000Hz with a cylindrical piezoelectric transducer, and then the sensor response to naturally damped vibration was examined by utilizing a metal cantilever. It was experimentally observed that the sensor output signal was deteriorated by more than 3dB at ~1900Hz in the single frequency vibration measurement with a minimum detectable strain perturbation of ${\sim}1.34n{\varepsilon}/Hz^{1/2}$ at 1500Hz and the peak value of the sensor output signal was proportional to the strength of initially applied stress in the naturally damped vibration measurement.

Fiber Bragg Grating 센서를 이용한 저진동 가속도계 개발 (Development of a Low Frequency Accelerometer using the Fiber Bragg Grating Sensor)

  • 백인석;강한빈;이계광;이석순
    • 한국정밀공학회지
    • /
    • 제29권10호
    • /
    • pp.1101-1109
    • /
    • 2012
  • Accelerometers play a key role in the structural assessment. However, the current electric type accelerometers have certain limitations to apply some structures such as heavy cabling labor, installed sea structure and sensitivity to electromagnetic fields. An optical Fiber Bragg Grating (FBG) accelerometer has many advantages over conventional electrical sensors since their immunity to electromagnetic interference and their capability to transmit signals over long distance without any additional amplifiers, and there is no corrosion from sea water. In this paper, we have developed a new FBG-based accelerometer. The accelerometer consists of two cantilevered type beams and a mass and two rollers. A bragg grating element is not directly glued to a cantilever to avoid possible non-uniform strain in the element. Instead, the bragg grating element will be attached to rotation part that rolled inducing vertical movement of the mass and support cantilever beams so that the bragg grating element is uniformly tensioned to achieve a constant strain distribution. After manufacturing, we will prove the performance and the natural frequency of the accelerometer through the experiment with a vibration shaker. The FBG-based accelerometer is developed for measuring the vibration not exceeding 50 Hz for the marine and civil structures.

딥러닝 기반 광섬유 분포 음향·진동 계측기술을 활용한 장거리 외곽 침입감지 시스템 개발 (Development of Long-perimeter Intrusion Detection System Aided by deep Learning-based Distributed Fiber-optic Acoustic·vibration Sensing Technology)

  • 김희운;이주영;정효영;김영호;권준혁;기송도;김명진
    • 센서학회지
    • /
    • 제31권1호
    • /
    • pp.24-30
    • /
    • 2022
  • Distributed fiber-optic acoustic·vibration sensing technology is becoming increasingly popular in many industrial and academic areas such as in securing large edifices, exploring underground seismic activity, monitoring oil well/reservoir, etc. Long-range perimeter intrusion detection exemplifies an application that not only detects intrusion, but also pinpoints where it happens and recognizes kinds of threats made along the perimeter where a single fiber cable was installed. In this study, we developed a distributed fiber-optic sensing device that measures a distributed acoustic·vibration signature (pattern) for intrusion detection. In addition, we demontrate the proposed deep learning algorithm and how it classifies various intrusion events. We evaluated the sensing device and deep learning algorithm in a practical testbed setup. The evaluation results confirm that the developed system is a promising intrusion detection system for long-distance and seamless recognition requirements.

광섬유 센서의 보링 바 삽입에 의한 진동측정 (The Vibration Measurement of Boring Process by Using the Optical Fiber Sensor at inside of Boring Bar)

  • 송두상;홍준희;곽양양
    • 한국정밀공학회지
    • /
    • 제28권6호
    • /
    • pp.709-715
    • /
    • 2011
  • Chattering in cutting operations are usually a cumbersome part of the manufacturing process in mechanical. Particular, machining performance such as that of the boring process is limited by cutting condition at the movable components. Among various sources of chatter vibration, detrimental point in cutting condition is found a mechanical condition on overhang. It limits cutting speed, depth, surface roughness and tool wear failure as result because the all properties are varying with the metal removal process. In this case, we have to observe the resonance frequencies of a boring bar for continuous cutting. In the established research, boring bar vibration of cutting system has been measured with the aid of accelerometer. However, the inherent parameters of internal turning operations are severely limit for the real time monitoring on accelerometers. At this point, this paper is proposed other method for real time monitoring during continuous cutting with optical fiber at the inside of boring bar. This method has been used a plastic fiber in the special jig on boring bar by based on experimental modal analysis. In this study, improvement of monitoring system on continuous internal cutting was attempted using optical fiber sensor of inside type because usually chattering is investigated experimentally measuring the variation in chip thickness. It is demonstrated that the optical fiber sensor is possibility to measure of chattering with real time in boring process.