• Title/Summary/Keyword: 광삼각측정법

Search Result 2, Processing Time 0.015 seconds

Development of a profile measuring system for conductor roll (전기도금 롤의 형상 측정시스템 개발)

  • Choi, Yong-Jun;Jun, Sung-Bai;Lee, Eung-Suk;Kim, Hyo-Sung;Jang, Ji-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1730-1741
    • /
    • 1997
  • In this paper, we developed a surface profile measuring system and a profile measuring software for EGL conductor roll. For the profilemeter, we designed a linear guided control system with Laser displacement sensors and developed a 3-dimensional software. Additionally, the AC motor and AC motor driver were used to control the precise position of linear guide system. The measuring principle of the Laser sensor is optical triangulation method. Also, two Laser sensors were used to remove the disturbance and vibration effects of the linear guide system.

Correction Method on Mismatched Posterior Edge of Medial and Lateral Tangential Fields for Three Fields Techniques in Breast Cancer (유방암 환자의 삼문 조사 시 내외측 접면 조사야의 Posterior Edge의 어긋남의 교정)

  • Kim Hun-Jung;Loh John JK;Kim Woo-Cheol;Park Sung-Young
    • Radiation Oncology Journal
    • /
    • v.21 no.2
    • /
    • pp.174-181
    • /
    • 2003
  • Purpose: The target volume for the three field technique in breast cancer include the breast tangential and supraclavicular areas. The techniques rotating the gantry and couch angles, to match these two areas, will geometrically produce mismatching of the posterior edge between the medial and lateral tangential beams. This mismatch was confirmed by film dosimetry and three-dimensional computer planning. The correction methods of this mismatching were studied in this article. Materials and Methods: After the supraclavicular field was simulated using a half beam block and the medial and lateral tangential fields, by the rotation of the couch and gantry, we compared the following two methods to correct the mismatch. The first method was the rotation of coillmator until a line drawn on the posterior edge of tangential beams before the rotation of couch aligned the line drawn on the posterior edge after the rotation. The second method was the rotation of collimator according to the formula developed by the author as follows; Co=$2sin^{-1}${$sin\{theta}\{cdot}sin(C/2)$} (Co: collimator angle, $\theta$: angle between tangential beam and table, C: couch angle) Results: The film dosimetry showed the mismatching of posterior edges of the medial and lateral tangential fields prior to the rotation of collimator, while the posterior edges matched well after the rotation of collimator according to the formula. The three-dimensional computer plan also showed that the posterior edges matched well after the rotation of collimator accordingly. The DVH of the ipsilateral lung with the proper rotation of collimator angle was better than that without the rotation of collimator angle. Conclusion: The mismatching of the posterior edges of the medial and lateral tangential fields can be recognized on the three fileld technique in breast irradiation when the gantry and couch are simultaneously rotated and can be corrected with the proper rotation of the collimator angle. The radiation dose to the ipsilateral lung could be lowered with this technique.