• Title/Summary/Keyword: 광산 현장

Search Result 205, Processing Time 0.029 seconds

A Study of Fluoride and Arsenic Adsorption from Aqueous Solution Using Alum Sludge Based Adsorbent (알럼 슬러지 기반 흡착제를 이용한 수용액상 불소 및 비소 흡착에 관한 연구)

  • Lee, Joon Hak;Ji, Won Hyun;Lee, Jin Soo;Park, Seong Sook;Choi, Kung Won;Kang, Chan Ung;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.667-675
    • /
    • 2020
  • An Alum-sludge based adsorbent (ASBA) was synthesized by the hydrothermal treatment of alum sludge obtained from settling basin in water treatment plant. ASBA was applied to remove fluoride and arsenic in artificially-contaminated aqueous solutions and mine drainage. The mineralogical crystal structure, composition, and specific surface area of ASBA were identified. The result revealed that ASBA has irregular pores and a specific surface area of 87.25 ㎡ g-1 on its surface, which is advantageous for quick and facile adsorption. The main mineral components of the adsorbent were found to be quartz(SiO2), montmorillonite((Al,Mg)2Si4O10(OH)2·4H2O) and albite(NaAlSi3O8). The effects of pH, reaction time, initial concentration, and temperature on removal of fluoride and arsenic were examined. The results of the experiments showed that, the adsorbed amount of fluoride and arsenic gradually decreased with increasing pH. Based on the results of kinetic and isotherm experiments, the maximum adsorption capacity of fluoride and arsenic were 7.6 and 5.6 mg g-1, respectively. Developed models of fluoride and arsenic were suitable for the Langmuir and Freundlich models. Moreover, As for fluoride and arsenic, the increase rate of adsorption concentration decreased after 8 and 12 hr, respectively, after the start of the reaction. Also, the thermodynamic data showed that the amount of fluoride and arsenic adsorbed onto ASBA increased with increasing temperature from 25℃ to 35℃, indicating that the adsorption was endothermic and non-spontaneous reaction. As a result of regeneration experiments, ASBA can be regenerated by 1N of NaOH. In the actual mine drainage experiment, it was found that it has relatively high removal rates of 77% and 69%. The experimental results show ASBA is effective as an adsorbent for removal fluoride and arsenic from mine drainage, which has a small flow rate and acid/neutral pH environment.

Comparison of Topographic Surveying Results using a Fixed-wing and a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (고정익 무인항공기(드론)와 보급형 회전익 무인항공기를 이용한 지형측량 결과의 비교)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • Recently, many studies have been conducted to use fixed-wing and rotary-wing unmanned aerial vehicles (UAVs, Drones) for topographic surveying in open-pit mines. Because the fixed-wing and rotary-wing UAVs have different characteristics such as flight height, speed, time and performance of mounted cameras, their results of topographic surveying at a same site need to be compared. This study selected a construction site in Yangsan-si, Gyeongsangnam-do, Korea as a study area and compared the topographic surveying results from a fixed-wing UAV (SenseFly eBee) and a popular rotary-wing UAV (DJI Phantom2 Vision+). As results of data processing for aerial photos taken from eBee and Phantom2 Vision+, orthomosaic images and digital surface models with about 4 cm grid spacing could be generated. Comparisons of the X, Y, Z-coordinates of 7 ground control points measured by differential global positioning system and those determined by eBee and Phantom2 Vision+ revealed that the root mean squared errors of X, Y, Z-coordinates were around 10 cm, respectively.

Field Experiment on Iron and Aluminum Removal from Acid Mine Drainage Using an Apatite Drain System (인회석 배수시스템을 이용한 산성수의 철 및 알루미늄 제거에 대한 현장경험)

  • Choi, Jung-Chan;West, Terry R.
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.315-323
    • /
    • 1996
  • An apatite drain was constructed on September 30, 1994 at the Green Valley Abandoned Coal Mine site near Terre Haute in west central Indiana. The primary objective of this experiment is to evaluate the long-term ability of the apatite drain to mitigate acid mine drainage (AMD) under field conditions. The drain 9 m long, 3.3 m wide, and 0.75 m deep, contain 95 rum to No. 30 mesh-size apatite ore (francolite) and receive AMD seepage from reclaimed gob piles, and designed according to the laboratory testing. The apatite drain was covered with limestone riprap and filter fabric to protect the drainage system from stormwater and siltation. The drain consists of about 50 metric tons of apatite ore obtained from a phosphate mine in Florida. A gabion structure was constructed downstream of the apatite drain to create a settling pond to collect precipitates. Apatite effectively removed iron up to 4,200 mg/l, aluminum up to 830 mg/l and sulfate up to 13,430 mg/l. The pH was nearly constant for the influent and effluent, ranging between 3.1 and 4.3. Flow rate measured at the gabion structure ranged from 3 to 4.5 l/m. Precipitates of iron and aluminum phosphate (yellow and white suspendid solids) continued to accumulate in the settling pond.

  • PDF

Design considerations and field applications on inflatable structure system to protect rapidly flooding damages in tunnel (해저터널 급속차폐를 위한 팽창구조체의 설계 및 현장적용에 대한 연구)

  • Kim, Hyeob;Kang, Si-On;Yoo, Kwang-San;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.161-177
    • /
    • 2017
  • This paper presents the design considerations and field applications on inflatable structure system to protect rapidly flooding damages in large section tunnel. This inflatable structure system is very valuably used to protect passively and rapidly the possibilities of tunnel damages by flooding threats and unusual leakage to be occurred during and after underground infrastructure. In particular, this system should be necessary in subsea tunnel. The predominant factors in the design of inflatable structure system are the leakage and friction characteristics between the inflater and tunnel liner. The analytical and experimental studies are performed to develop the design considerations and to examine the design parameters of the inflatable structure system. The analytical solutions are developed using membrane theory to suggest the design considerations. The relative friction tests of several fabric materials are also carried out to determine the friction characteristics according to the different friction conditions between inflater and tunnel surface. The test results show that the friction coefficients in wet surface condition are about 20% lower than the values in dry surface condition. In addition, virtual design of tunnel protection system for two virtual subsea tunnel sites which is under reviewing in Korea, is carried out based on this research. It is expected that the results of this research will be very useful to understand the inflater structure design and development the technology of tunnel protection structures in the future.

A Case Study on the Construction at Near Verge Section of Secure Objects Using Electronic Detonators (전자뇌관을 이용한 보안물건 초근접구간 시공 사례)

  • Hwang, Nam-Sun;Lee, Dong-Hee;Lim, Il-soo;Kim, Jin-soo
    • Explosives and Blasting
    • /
    • v.37 no.2
    • /
    • pp.22-30
    • /
    • 2019
  • On sites where explosives are used, the effects of noise and vibration produced by the blast wave are subject to a number of operational restrictions. Recently, the number of civil complaints has increased and the standard of environmental regulations on secure goods has been greatly tighten. Therefore, work is generally carried out by machine excavation in case of close proximity of safety thing. Machine excavation methods have the advantage as reducing noise and vibration compared to blasting methods, but depending on the conditions of rock intended to be excavated, they are sometimes less constructive than planned. In general, the closer a rock type is to hard rock, the less constructible it becomes. In this paper, we are going to explain the construction of a construction section with a close proximity to a safety thing using electronic detonators. While the project site was designed with a machine excavation methods due to the close(9.9m) proximity of safety thing(the railroad), construction using electronic detonators was reviewed as an alternative method for improving rate of advance time and construction efficiency when expose to hard rock. Through blasting using electronic detonators, construction and economic efficiency were maximized while minimizing impact on surrounding safety things. Because $HiTRONIC^{TM}$, which is produced by Hanwha, has innovative stability and high explosion reliability, it is able to explode with high-precision accuracy. Electronic detonators are widely used in construction sites of railway or highway, other urban burrowing areas and large limestone mines.

The Case Study on Application of 3 Dimensional Modeling Method with Geophysical Data (물리탐사 자료에 대한 3차원 지반 모델링 적용 사례 연구)

  • Heo, Seung;Park, Joon-Young;Do, Jung-Lok;Yoo, In-Kol
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.221-229
    • /
    • 2008
  • The three dimensional model method is widely applied in resource development for feasibility study, mine design, excavation planning and process management by constructing the database of various data in 3 dimensional space. Most of geophysical surveys for the purpose of engineering and resource development are performed in 2 dimensional line survey due to the restriction of the field situation, technical or economical situation and so on. The acquired geophysical data are used as the input for the 2 dimensional inversion under the 2 dimensional assumption. But the geophysical data are affected by 3 dimensional space. Therefore in order to reduce the error caused by 2 dimensional assumption, the 2 dimensional inversion result must be interpreted considering the additional information such as 3 dimensional topography, geological structure, borehole survey etc. The applicability and usability of 3 dimensional modeling method are studied by reviewing the case study to the geophysical data acquired in field of engineering and resource development.

Characteristics of By-product Ochre from Acid Mine Drainage (AMD) Treatment and Its Potential Use (산성광산배수 (AMD) 처리 부산물 ochre의 특성과 활용)

  • Jeong, Jung-Hwan;Kim, Ho-Jin;Kim, Young-Nam;Nam, Kwang-Soo;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.304-314
    • /
    • 2010
  • This study was carried out to find out potential use of ochre as an agent to reduce phosphorus content in water. Ochre is a by-product from treatment of acid mine drainage (AMD) which is composed mostly of $Fe_2O_3$, $Fe_2O_3{\cdot}H_2O$, $FeO{\cdot}OH$ and $Fe(OH)_3$. Three ochre samples (ochre-H, ochre-D and ochre-S) were collected from three treatment facilities in Gangwon province. Physico-chemical characteristics of three ochre samples including pH, electrical conductivity, total phosphorus, available phosphorus, particle size distribution were analyzed. Scanning electron microscopy (SEM) energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis were also carried out. In addition, experiments for phosphorus removal from water was performed. Calcium content of ochre-H was higher than that of ochre-D and ochre-S, whereas iron content of ochre-H was lower than that of ochre-D and ochre-S. All the phosphorus in water up to maximum 191,411 mg $kg^{-1}$ per unit mass of ochre was removed with ochre-H. Ochre has immense potential as an agent to reduce phosphorus content in water.

Laboratory Study on the Removal of Heavy Metals Using Apatite for Stabilization of Tailings at the Ulsan Abandoned Iron Mine (울산폐철광산 광미 안정화를 위한 인회석의 중금속 제거 실내실험)

  • Choi, Jung-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2006
  • The purpose of this study is to evaluate laboratory experiments on arsenic and cadmium removal from tailings using apatite at the Ulsan Abandoned Iron Mine, and to develop a stabilization technique. The results of this study show that the permeability is decreased proportionally to the amount of apatite when it is added below 8%, while this is almost constant when the amount of apatite is added above 10%. The water extraction test from tailings using deionized water for several days shows that pH (7.4-8.4) is almost constant or slightly increased when apatite is added below 8%, while it is slightly decreased when apatite is added above 10%. According to TCLP test, reduction of concentrations of heavy metals in leachate is proportional to amount of apatite added. It seems that precipitates generated from leachate-apatite chemical reaction are not redissolved. As a result, cadmium and arsenic in leachate is mostly removed when apatite is added above 10%, and it is suggested that a proper technique should be selected for field application because either mixed or layered method shows almost same removal efficiencies of cadmium and arsenic in tailings.

Recycling Studies for Swine Manure Slurry Using Multi Process of Aerobic Digestion (MPAD) (다중 호기 소화공정을 이용한 양돈분뇨 슬러리의 자원화 연구)

  • Kim, Soo-Ryang;Yoon, Seong-Ho;Lee, Jun-Hee;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.15 no.2
    • /
    • pp.155-160
    • /
    • 2009
  • This study was carried out to investigate the feasibility of Multi Process of Aerobic Digestion (MPAD) for recycling of swine manure slurry as fertilizer. MPAD consisted of three kinds of difference process which are thermophilic aerobic oxidation (TAO) system, lime solidification system, and reverse osmosis (R/O) membrane system. TAO system was studied well previously for decade. The chemical composition of the lime-treated solid fertilizer was as like that organic matter 17.4%, moisture 34.1%, N 0.9%, P 1.7%, K 0.3%, Ca 12.7%, and which was expected to be useful as acid soil amendment material. The concentrated liquid material produced by R/O membrane system was also expected as a good fertilizer for crops production and soil fertility improvement.

  • PDF

Development of Three-dimensional Inversion Algorithm of Complex Resistivity Method (복소 전기비저항 3차원 역산 알고리듬 개발)

  • Son, Jeong-Sul;Shin, Seungwook;Park, Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.180-193
    • /
    • 2021
  • The complex resistivity method is an exploration technique that can obtain various characteristic information of underground media by measuring resistivity and phase in the frequency domain, and its utilization has recently increased. In this paper, a three-dimensional inversion algorithm for the CR data was developed to increase the utilization of this method. The Poisson equation, which can be applied when the electromagnetic coupling effect is ignored, was applied to the modeling, and the inversion algorithm was developed by modifying the existing algorithm by adopting comlex variables. In order to increase the stability of the inversion, a technique was introduced to automatically adjust the Lagrangian multiplier according to the ratio of the error vector and the model update vector. Furthermore, to compensate for the loss of data due to noisy phase data, a two-step inversion method that conducts inversion iterations using only resistivity data in the beginning and both of resistivity and phase data in the second half was developed. As a result of the experiment for the synthetic data, stable inversion results were obtained, and the validity to real data was also confirmed by applying the developed 3D inversion algorithm to the analysis of field data acquired near a hydrothermal mine.