• Title/Summary/Keyword: 광산폐기물

Search Result 76, Processing Time 0.026 seconds

A Comparison Study of Alum Sludge and Ferric Hydroxide Based Adsorbents for Arsenic Adsorption from Mine Water (알럼 및 철수산화물 흡착제의 광산배수 내 비소 흡착성능 비교연구)

  • Choi, Kung-Won;Park, Seong-Sook;Kang, Chan-Ung;Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.689-698
    • /
    • 2021
  • Since the mine reclamation scheme was implemented from 2007 in Korea, various remediation programs have been decontaminated the pollution associated with mining and 254 mines were managed to reclamation from 2011 to 2015. However, as the total amount of contaminated mine drainage has been increased due to the discovery of potential hazards and contaminated zone, more efficient and economical treatment technology is required. Therefore, in this study, the adsorption properties of arsenic was evaluated according to the adsorbents which were derived from water treatment sludge(Alum based adsorbent, ABA-500) and granular ferric hydroxide(GFH), already commercialized. The alum sludge and GFH adsorbents consisted of aluminum, silica materials and amorphous iron hydroxide, respectively. The point of zero charge of ABA-500 and GFH were 5.27 and 6.72, respectively. The result of the analysis of BET revealed that the specific surface area of GFH(257 m2·g-1) was larger than ABA-500(126~136 m2·g-1) and all the adsorbents were mesoporous materials inferred from N2 adsorption-desorption isotherm. The adsorption capacity of adsorbents was compared with the batch experiments that were performed at different reaction times, pH, temperature and initial concentrations of arsenic. As a result of kinetic study, it was confirmed that arsenic was adsorbed rapidly in the order of GFH, ABA-500(granule) and ABA-500(3mm). The adsorption kinetics were fitted to the pseudo-second-order kinetic model for all three adsorbents. The amount of adsorbed arsenic was increased with low pH and high temperature regardless of adsorbents. When the adsorbents reacted at different initial concentrations of arsenic in an hour, ABA-500(granule) and GFH could remove the arsenic below the standard of drinking water if the concentration was below 0.2 mg·g-1 and 1 mg·g-1, respectively. The results suggested that the ABA-500(granule), a low-cost adsorbent, had the potential to field application at low contaminated mine drainage.

부산석회를 활용한 휴ㆍ폐 석탄광산 폐기물에서 유출된 침출수의 안정화

  • 김휘중;양재의;옥용식;유경열;박병길;이재영;전상호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.48-58
    • /
    • 2004
  • Objectives of this research were to reclaim the coal mine overburdens using the lime waste cake from the soda ash production by stabilizing the overburden slopes, introducing neutralizing the AMD from runoff and leachate in an attempt find the sink to dispose the lime wastes and alleviate the environmental problems caused by the closed coal mines. The pH changes of the runoff and leachate collected in the tanks at the end of the experimental plots, averaged over measurements from April to August, indicated that the runoff pH of the coal overburden was 4.3 but increased significantly to the ranges of 6.7 to 7.1 with treatments of tile calcites and lime wastes. This might be related with the decreases in Fe concentrations in the runoff and leachate from the coal overburdens. The Fe concentrations in tile runoff seemed to increase with the amounts of precipitation. Results demonstrated that the amounts of lime wastes at 25% of the lime requirement were sufficient for neutralizing the acidic coal overburden. Either layering between the coal waste and topsoil or mixing with coal overburdens could be adopted as the lime waste treatment method. The lime wastes from the soda ash production might have a potential to be recycled for the reclamation of the abandoned coal mines to alleviate the environmental problems associated with coal mine waste.

  • PDF

Changes in Cobalt Adsorption Properties of Montmorillonite by Dehydration (탈수 작용에 따른 몬모릴로나이트의 코발트 흡착 특성 변화)

  • Yeongjun Jang;Yeongkyoo Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.107-115
    • /
    • 2023
  • Cobalt can be released into the natural environment as industrial waste from the alloying industry and as acid mine drainage, and it is also a radionuclide (60Co) that constitutes high-level radioactive waste. Smectite is a mineral that can be useful for adsorption and isolation of this element. In this study, Cheto-type montmorillonite (Cheto-MM), which is the source clays of The Clay Mineral Society (CMS) and already well-characterized, was used. The effect of the adsorption site affected by the presence of interlayer water on the adsorption of cobalt before and after dehydration by heating was evaluated and the adsorption mechanism of cobalt on Cheto-MM was studied by applying adsorption kinetics and adsorption isotherm models. The results showed that the adsorption characteristics changed with dehydration and subsequent shrinkage, and cobalt was found to be adsorbed at the edge of Cheto-MM for about 38% and adsorbed at the interlayer site for about 62%, suggesting that the cobalt adsorption of Cheto-MM is significantly influenced by the interlayer. By applying the adsorption kinetic models, the cobalt adsorption kinetics of Cheto-MM is explained by a pseudo-second-order model, and the concentration-dependent adsorption was best described by the Langmuir isotherm adsorption model. This study provides basic knowledge on the adsorption characteristic of cobalt on montmorillonite with different adsorption sites and is expected to be useful in predicting the adsorption behavior of smectite in high-level radioactive waste disposal sites in the future.

The Effects of pH Control on the Leaching Behavior of Heavy Metals within Tailings and Contaminated Soils : Seobo and Cheongyang Tungsten Mine Areas (광미와 오염토양 내 중금속 용출특성에 미치는 pH영향 : 청양과 서보중석광산)

  • 이평구;강민주;박성원;염승준
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.469-480
    • /
    • 2003
  • Laboratory leaching experiment study carried out to estimate a extent of heavy metals that could be leached out when acid rain(pH 5.0-3.0) and strong acidic solution(pH 2.5-1.0) reacted with tailings and contaminated soils from abandoned metal mines. In slightly to moderately acid conditions(pH 5.0-3.0), As, Pb and Zn dissolutions became significantly increased with decreased pH in tailing, while dissolution of these elements was very limited in contaminated soil. These results suggested that moderately acid rainwater leaches Pb, As and Zn from the tailings, while these elements would remain fixed in contaminated soil. In the pH range of 2.5-1.0(strongly acid condition), Zn, Cd and Cu concentrations of leachate rapidly increased with decreased pH in contaminated soil, while Pb, As and Co dissolutions became importantly increased in tailings. The experimental solubility of Zn. Cd and Cu was very low even at very low pH values(up to pH 1), except for CY4(Cheongyang mine). These can result from an incomplete dissolution or the presence of less soluble mineral phases. So, the solubility of heavy metals depends not only on the pH values of leachate but also on the speciation of metals associated with contaminated soils and tailings. The relative mobility of each element within failings at the pH 5.0-3.0 of the reaction solution was in the order of Pb>Zn>Cd>Co=Cu>As. In case of pH 2.5-1.0 of the reaction solution, the relative mobility of each element within contaminated soils and tailings were in the order of Zn>Cd>Cu>Co>Pb=As for contaminated soils, and Pb>Zn>Cd>hs>Co>Cu for tailings. The obtained results could be useful for assessing the environmental effects and setting up the restoration plan in the areas.

Chemical Remediation and Recirculation Technologies of Wastewater from Metal-Contaminated Soil Washing (금속오염(金屬汚染) 토양세척(土壤洗滌) 폐수(廢水)의 화학적(化學的) 처리(處理)와 재순환(再循環) 기술(技術))

  • Lim, Mi-Hee;Abn, Ji-Whan
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.28-39
    • /
    • 2011
  • This review investigated theoretical principals and practical application examples on recirculation system of soil washing-wastewater treatment-treated water recycling. As for technologies which have attempted to remediating metals-contaminated soil in and around country, there are reactive barriers, encapsulation, solidification/stabilization, soil washing, and phytoremediation. Among those, in particular, this review covers soil washing technology which physicochemically removes contaminants from soils. The major drawbacks of this technology are to generate a large amount of wastewater which contains contaminants complexed with ligands of washing solution and needs additional treatment process. To solve these problems, many chemical treatment methods have been developed as follows: precipitation/coprecipitation, membrane filtration, adsorption treatment, ion exchange, and electrokinetic treatment. In the last part of the review, recent research and field application cases on soil washing wastewater treatment and recycling were introduced. Based on these integrated technologies, it could be achieved to solve the problem of soil washing wastewater and to enhance cost effective process by reducing total water resources use in soil washing process.

A Study on the Enhanced Cleanup of Mine Tailings Using Thiobacillus ferrooxidans (Thiobacillus ferrooxidans를 이용한 광미 정화의 효율 증진에 관한 연구)

  • 이지희;최상일
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.120-125
    • /
    • 1999
  • This study was carried out to enhance the efficiency of bioleaching of heavy metals. copper and zinc from the soil samples obtained from mine tailings in Cho-il Mine located in Dan-Yang, Choong-Buk. The effects of medium (9 K) composition on the leaching efficiency were investigated by changing concentrations of the dominant components. phosphorus, nitrogen source. and energy source which are the most important factors governing the growth and multiplication of microorganism. The results of the bioleaching test at different phosphorus concentrations of medium, 0 mM. 3.0 mM, and 6.0 mM showed that leaching efficiency for zinc and copper was 98.8% and 47.5% respectively at 0 mM and decreased at higher phosphorus concentration 6.0 mM. In the bioleaching test of zinc and copper at 0 mM, 45 mM, and 90 mM nitrogen concentrations, the Highest efficiency of 85% and 46.4% was obtained for zinc and cooper respectively at 45 mM and the lower efficiency observed for 90mM nitrogen addition. The zinc and copper leaching with variation of energy source dosage showed the highest removal efficiency, 93% for zinc in the absence of energy source and 46.4% for copper at 160mM energy source.

  • PDF

A Study on the Status of Fine Dust Generated from Construction Waste Intermediate Treatment Plants in Rural Area and Its Impact on Neighboring Areas (농촌지역 건설폐기물 중간처리 사업장에서 발생하는 미세먼지의 발생 현황 및 인근 지역에 미치는 영향 연구)

  • Jang, Kyong-Pil;Park, Ji-Sun;Kim, Byung-Yun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.25 no.4
    • /
    • pp.9-16
    • /
    • 2023
  • In this study, the status and characteristics of fine dust and its impact on neighboring areas were investigated to proactively respond to the government's environmental regulations expected in the future and to minimize the damage by the fine dust generated at construction waste intermediate treatment plants. In addition, since there are no such plants that can affect the surroundings with no houses or other waste treatment sites nearby, an independently located construction waste intermediate treatment plant was selected to compare the characteristics of fine dust with that from the construction waste intermediate treatment sites located in the downtown area. The conclusions of the study are as follows. (1) The measurement results of PM10 at 4 points in the plant showed that the location where the crushing facility was operating had an elevated level of fine dust at 80㎍/m3 on average and a maximum of 124㎍/m3, and the level rose to 110㎍/m3 at points where vehicles frequent. (2) The PM2.5 measurement results inside the plant showed that the average concentration of the reference point was 16㎍/m3 and the maximum value was 20㎍/m3, which was distributed within the management standard. (3) It was found that the average concentration of PM10 in the nearby area ranged from 28 to 38㎍/m3, which was similar to or lower than 36㎍/m3 of the reference point. Therefore, the concentration of the fine dust generated in the plant had a negligible effect on the increase in concentration of fine dust in nearby areas. (4) The heavy metal contents were measured from the filter paper collected from the plant. The PM10 was found to be about 14 to 26ng/m3, and PM 2.5 was 25 to 28ng/m3, which was the average of domestic atmospheric concentrations. (5) The SEM-EDX analysis results showed that the PM10 contained Si and O around 40% similarly for both. The SiO2, a component of silica occupied the most and C was present as CaCO3, which was assumed to be a limestone component. The remaining components included NaO, Al2O3, and CaO as trace oxides. (6) The SEM-EDX analysis results showed that the PM 2.5 contained 5 to 7% of Cl, which is a chlorine ion, and a small amount of K was detected at 2.51% in the sample from the shutdown plant.

Characterization of Heavy Metals in the Stream Sediment around an Old Zinc Mine (가학광산 지역 하천 저니토 중금속의 화학적 특성)

  • Yoo, Sun-Ho;Ro, Kwang-Jun;Lee, Sang-Mo;Park, Moo-Eon;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.432-438
    • /
    • 1996
  • This study was carried out to prepare information for the establishment of countermeasures for an area contaminated with minewaste from an old zinc mine at Kahak-long in Kwangmyong. Minewaste and bottom sediments from the streams in this area were sampled and were analyzed for Cd, Cu, Pb, and Zn extracted with different solution. Total heavy metal contents in both minewaste and bottom sediments were fairly high. Cadmium and Zn contents in the minewaste and Cd, Cu, Pb, and Zn contents in the bottom sediments extracted with 0.1 N HCl showed a much higher level than those in the background level of paddy soils and in the soils around the other metal mines regardless of the distance from the mine. Sulfide/residue forms of Cd, Cu, Pb, and Zn covered the highest portions for the minewaste. For bottom sediments, sulfide/residue forms of Cu and Zn formed the highest portions, whereas the contents of both carbonate and sulfide/residue forms of Cd and Pb were significant. The lower the pH of the extracting solutions, the more heavy metals extracted from both minewaste and bottom sediments.

  • PDF

Identification of Sorption Characteristics of Cesium for the Improved Coal Mine Drainage Treated Sludge (CMDS) by the Addition of Na and S (석탄광산배수처리슬러지에 Na와 S를 첨가하여 개량한 흡착제의 세슘 흡착 특성 규명)

  • Soyoung Jeon;Danu Kim;Jeonghyeon Byeon;Daehyun Shin;Minjune Yang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • Most of previous cesium (Cs) sorbents have limitations on the treatment in the large-scale water system having low Cs concentration and high ion strength. In this study, the new Cs sorbent that is eco-friendly and has a high Cs removal efficiency was developed by improving the coal mine drainage treated sludge (hereafter 'CMDS') with the addition of Na and S. The sludge produced through the treatment process for the mine drainage originating from the abandoned coal mine was used as the primary material for developing the new Cs sorbent because of its high Ca and Fe contents. The CMDS was improved by adding Na and S during the heat treatment process (hereafter 'Na-S-CMDS' for the developed sorbent in this study). Laboratory experiments and the sorption model studies were performed to evaluate the Cs sorption capacity and to understand the Cs sorption mechanisms of the Na-S-CMDS. The physicochemical and mineralogical properties of the Na-S-CMDS were also investigated through various analyses, such as XRF, XRD, SEM/EDS, XPS, etc. From results of batch sorption experiments, the Na-S-CMDS showed the fast sorption rate (in equilibrium within few hours) and the very high Cs removal efficiency (> 90.0%) even at the low Cs concentration in solution (< 0.5 mg/L). The experimental results were well fitted to the Langmuir isotherm model, suggesting the mostly monolayer coverage sorption of the Cs on the Na-S-CMDS. The Cs sorption kinetic model studies supported that the Cs sorption tendency of the Na-S-CMDS was similar to the pseudo-second-order model curve and more complicated chemical sorption process could occur rather than the simple physical adsorption. Results of XRF and XRD analyses for the Na-S-CMDS after the Cs sorption showed that the Na content clearly decreased in the Na-S-CMDS and the erdite (NaFeS2·2(H2O)) was disappeared, suggesting that the active ion exchange between Na+ and Cs+ occurred on the Na-S-CMDS during the Cs sorption process. From results of the XPS analysis, the strong interaction between Cs and S in Na-S-CMDS was investigated and the high Cs sorption capacity was resulted from the binding between Cs and S (or S-complex). Results from this study supported that the Na-S-CMDS has an outstanding potential to remove the Cs from radioactive contaminated water systems such as seawater and groundwater, which have high ion strength but low Cs concentration.

Evaluating Stabilization Efficiency of Coal Combustion Ash (CCA) for Coal Mine Wastes: Column Experiment (석탄회를 이용한 석탄광산 폐기물의 안정화 효율성 평가: 컬럼 시험)

  • Oh, Se-Jin;Kim, Sung-Chul;Ko, Ju-In;Lee, Jin-Soo;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1071-1079
    • /
    • 2011
  • In this study, coal combustion ash (CCA) was evaluated for its stabilization effect on acidic mine waste with column experiment. Total of six treatments were installed depending on mixing ratio between coal wastes and CCA (0, 20, 40%) and mixing method (completely mixing and layered). Artificial acidic rain (pH 5.6) was used for feeding solution with flow rate of $0.05mL\;min^{-1}$. Result showed that higher pH of leachate was observed as more CCA was mixed. The highest pH in leachate was measured when 40% of CCA was mixed with coal waste (pH of 5.8). Also, complete mixing with CCA and coal waste was more effective to increase the pH of leachate than layered treatment. Regarding the reduction of soluble Fe amount, the highest efficiency (78%) was observed when 20% of coal ash was completely mixed with mine waste. Based on those result, optimum mixing ratio of coal ash with mine waste can be ranged 20-40% depending on environmental circumstances in the field.