• Title/Summary/Keyword: 광산배수

Search Result 197, Processing Time 0.024 seconds

Acid Drainage and Damage Reduction Strategy in Construction Site: An Introduction (건설현장 산성배수의 발생현황 및 피해저감대책)

  • Kim, Jae-Gon
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.651-660
    • /
    • 2007
  • Acid drainage has been recognized as an environmental concern in abandoned mine sites for long time. Recently, the environmental and structural damage by acid drainage is a current issue in construction sites in Korea. Here, the author introduces the type of damages by acid drainage in construction sites and emphasizes the importance of geoscience discipline in solving the problem. Metasedimentary rock of Okcheon group, coal bed of Pyeongan group, Mesozoic volcanic rock. and Tertiary sedimentary and volcanic rocks are the major rock types with a high potential for acid drainage upon excavation in Korea. The acid drainage causes the acidification and heavy metal contamination of soil, surface water and groundwater, the reduction of slope stability, the corrosion of slope structure, the damage on plant growth, the damage on landscape and the deterioration of concrete and asphalt pavement. The countermeasure for acid drainage is the treatment of acid drainage and the prevention of acid drainage. The treatment of acid drainage can be classified into active and passive treatments depending on the degree of natural process in the treatment. Removal of oxidants, reduction of oxidant generation and encapsulation of sulfide are employed for the prevention of acid drainage generation.

폐탄광 복원에 대향 조사, 평가 및 복구 설계

  • 최정찬
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.11a
    • /
    • pp.3-21
    • /
    • 2002
  • 국내의 휴ㆍ폐탄광 수는 2002년 현재 230여 개에 이르고 있다. 이에 따라 갱도, 폐석적치장 및 광산 시설물들은 방치상태로 남게 되며 광해의 주요인자가 되고 있다. 광해현상은 이들로부터 유출되는 산성광산배수(Acid Mine Drainage : AMD), 폐석 및 오염토양의 유실 및 하류부 퇴적, 채굴적 상부 및 인접지역의 지반침하 등이다. AMD는 pH가 6.0 미만이고 총산도(total acidity)가 총알카리도(total alkalinity)를 초과하는 물로서 노천광이 가행되었던 지역, 가행중이거나 휴광 또는 폐광된 광산에서 유출된다. 또한 도로사면 절개부나 지하철 터널에서도 황철석(pyrite)이나 백철석(marcasite)등을 함유하는 층이 공기 중에 노출되면 산성수가 침출되어 나오기도 한다. AMD에 의한 하천수의 오염이 매우 극심하여 때로는 미생물마저도 그 속에 살 수 없게 된다. AMD에 의해 오염된 하천수의 오염범위는 산성수의 양, 농도, 하천에 유입되는 산성수의 분포, 상류에서 흘러드는 오염되지 않은 물의 양, 지류에서 유입되는 물의 양에 따라 좌우된다. AMD 오염이 문제시되고 있는 나라는 미국을 포함하여 호주, 일본, 한국, 러시아, 남아연방 등이다. AMD를 처리하기 위해 여러 기술이 도입 적용되었으며 일부 기술들은 현재도 사용되고 있다. 각 기술마다 일장일단이 있으므로 경비의 과다, 유지 및 관리에 대한 지속성 여부, 공간의 확보 여부, 지역적 특수성에 맞춰 가장 적합한 방법을 채택하여야 하며 꾸준히 채택한 기술의 개량 및 새로운 기술의 첨가가 요구되고 있다. 따라서, AMD 오염지대에 대해 획일적으로 같은 처리방법을 채택하여 사용하는 것보다 각 지역 또는 AMD가 유출되어 나오는 광산폐기물의 특성 등을 고려하여 거기에 맞는 기술들을 복합적으로 또는 단독으로 사용하되 처리방법 채택 시 신중을 기할 것이 요망된다. 우리나라에서도 폐탄광을 복원하기 위하여 여러 시도가 있었으나 시간적, 경제적으로 충분히 고려하지 않아 시행착오을 범하고 있다. 따라서, 복원 대상광산에 대한 실제적인 조사, 평가 및 복구설계의 과정을 예로 들어 적절한 처리과정을 토의하고자 한다.

  • PDF

The Treatment Properties of Heavy Metals in Acid Mine Drainage with Micro-bubble and UV/H2O2 Oxidation Process (마이크로버블과 자외선/과산화수소 산화공정을 이용한 광산배수의 중금속 처리 특성)

  • Jung, Yong-Jun;Jung, Jae-Ouk
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.303-309
    • /
    • 2017
  • Aeration with low energy micro-bubble generation and $UV/H_2O_2$ processes was introduced to verify the possibility of oxidation treatment for acid mine drainage. During 10 hours of aeration with micro-bubbles, Fe and As concentrations were decreased to 18.1 and 61.8%, respectively, while Cu, Cd, Al were kept at influent concentrations. Other heavy metals such as Mn, Cr, Pb, Zn, and Ni concentrations fluctuated due to the repetition of oxidation and release. Twenty days of aeration indicated the oxidation possibility for Cu, Cd, and Al. With the employment of $UV/H_2O_2$ processes, more than 77% of Cu and Fe removed, whereas slightly more than 30% of Cd and Al removed.

폐광 전후 삼탄 광산배수의 수질특성과 의의

  • 정영욱;강상수;임길재;홍성규;조원재;조영도;전호석;민정식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.422-425
    • /
    • 2003
  • This study was carried out to apprehend the variation of quality of mine drainage in the abandoned Samtan coal mine. After closure of coal mine, although still pumping, water level in underground was raised to loom and the concentration of some elements such as Fe and Mn was elevated. At present, the worst pollution source in this area is too the acidic leachate drained from uncovered mine waste impoundment. The flow rate of mine drainage from the adit is ave. about 20,000t/d. If water were flooded and deteriorated due to stopping pumping, the impact of the mine drainage on the stream around the abandoned mine would be more severe. Therefore, It is considered that the prediction of water quality of mine drainage from the adit after stopping pumping will be very important with a view to establishing countermeasures.

  • PDF

국내 폐탄광 광산배수 자연정화처리시설의 가동현황 연구

  • 지상우;고주인;김효범;강희태;김재욱;김선준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.352-355
    • /
    • 2003
  • 27 passive systems in 21 mines constructed by The Coal Industry Promotion Board since 1996 were investigated to evaluate the treatment efficiency of systems and find problems in each system, which will eventually lead to the improvement or suggesting the alternative method of the passive treatment system. Problems in operation include overflow, leakage, inefficiency and unusablness. The efficiency of systems which has been evaluated by metal(Fe) removal rate and/or by acidity removal rate do not reflect the poor removal rate of S $O_4$$^{2-}$. Especially high concentration of S $O_4$$^{2-}$ and high COD in the beginning of the operation would decrease the bacteria activity due to the lack of the nutrition. To solve the problem of overflow the upflow-type SAPS is being considered.

  • PDF

남한지역 탄전별 광산배수의 특성에 관한 연구

  • 지상우;이상훈;이현석;유상희;강희태;김선준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.389-392
    • /
    • 2003
  • Coalfields in Korea have been grouped into thirteen based on mainly geographycal and geological structure, ten out of which have been developed. To classify the phisico-chemical characteristics of mine drainage from each coalfield and, if possible, to clarify the intrinsic reasons of them. Sampling of waters from 59 mines in eight coalfields has been carried out. Higher pH of drainage water from the mines of the Cungchung coalfield belong to the Beading system, Mesozoic era than those belong to the Pyungan system, Proterozoic era is due to the low content of sulfides of neighboring strata. The drainage from coal beds overlying limestone bed mostly show high pH. Waters from the Gangrung and Samchuck coalfields coal beds are located within black shale formation which contains a lot of sulfides showed mostly very high metal and S $O_{4}$$^{2-}$ concentrations.

  • PDF

A Study of Heavy Metal Equilibria in Acid Mine Drainage Receiving Stream (광산배수 수용하천의 중금속이온 평형에 관한 연구)

  • Kim, Jin-Beom;Jun, Sang-Ho;Kim, Hee-Jong
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.733-738
    • /
    • 1996
  • Heavy metal equilibria in the Dongnam stream which receives the wastewater from mining activities are investigated to provide some basic data for the management of small stream with acid mine drainage. Saturation, undersaturation, and supersaturation of some heavy metal ions with respect to some mineral phases are evaluated by saturation index (logIAP/Ksp). The $Al^{3+}$ activities showed equilibrium with $AIOHSO_4$ solid phase below a pH of 6.0. The $Fe^{3+}$ activities appeared to be controlled by Fe $(OH)_{3(amorphous)}$ solid phase below a pH of 4.0. $Zn^{2+}$ activities appeared to be regulated by $ZnCO_3$ solid phase above a pH of 6.8. Some heavy metal activities appeared to be depended upon the pH.

  • PDF

Evaluation of Heavy Metal Contamination in Streams within Samsanjeil and Sambong Cu Mining Area (삼산제일.삼봉 동광산 주변 수계의 중금속 오염도 평가)

  • Kim, Soon-Oh;Jung, Young-Il;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.171-187
    • /
    • 2006
  • The status of heavy metal contamination was investigated using chemical analyses of stream waters and sediments obtained from Samsanjeil and Sambong Cu mining area in Goseong-gun, Gyeongsangnam-do. In addition, the degree and the environmental risk of heavy metal contamination in stream sediments was assessed through pollution index (Pl) and danger index (DI) based on total digestion by aqua regia and fractionation of heavy metal contaminants by sequential extraction, respectively. Not only the degree of heavy metal contamination was significantly higher in Samsanjeil area than in Sambong area, but its environmental risk was also revealed much more serious in Samsanjeil area than in Sambong area. The differences in status and level of contamination and environmental risk between both two mining areas may be attributed to existence of contamination source and geology. Acid mine drainage is continuously discharged and flows into the stream in Samsanjeil mining area, and it makes the heavy metal contamination in the stream more deteriorated than in Sambong mining area in which acid mine drainage is not produced. In addition, the geology of Samsanjeil mining area is mainly comprised of andesitic rocks including a small amount of calcite and having lower pH buffering capacity fer acid mine drainage, and it is likely that the heavy metal contamination cannot be naturally attenuated in streams. On the contrary, the main geology of Sambong mining area consists of pyroclastic sedimentary Goseong formation containing a high content of carbonates, particularly calcite, and it seems that these carbonates of high pH buffering capacity prevent the heavy metal contamination from proceeding downstream in stream within that area.

Evaluation of Field Applicability with Coal Mine Drainage Sludge as a Liner: Part II: Effect of Freezing/Thawing in CMDS Mixed Liner (차수재로의 광산슬러지 재활용 적용성 평가: Part II: 동결/융해에 의한 광산슬러지 혼합 차수재의 거동)

  • Lee, Jai-Young;Bae, Sun-Young;Park, Kyoung-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.73-79
    • /
    • 2011
  • Based on the results of Part 1 of our two-parts paper, the possibility on field applicability of CMDS(Coal Mine Drainage Sludge) mixed with bentonite and cement as a liner in landfill sites was investigated. The optimum moisture content that met the landfill liner condition was obtained when the ratio of CMDS: bentonite: cement was 1: 0.5: 0.3 in a lab-scale. The relative compaction was measured in 90.1%, which results for construction field have been generally acceptable. In this study, a large-scale Lysimeter($1.0m{\times}1.5m{\times}2.0m$) was used to simulate the effects of the layer on the freeze/thaw by -20 average temperature. The mixture after freezing/thawing showed compressive strength more than $5kg/cm^2$, which was satisfied with EPA standards. Initial permeability of CMDS was $7.10{\times}10^{-7}cm/s$ and permeability its mixture after freezing/thawing was increased to $9.80{\times}10^{-7}cm/s$. The change of temperature in the layers rises and falls with linear and temperature gradient keep maintain the present state. Moisture contents in the layers have not been radically changed. Through the leaching test determined by KSLT method, it was found that heavy metals excluding Zn and Ni were not leached out or leached out less than the standards during 7 cycles of freezing/thawing process. Since it shows the increased permeability about 1.5 times and slight change in moisture content, but it was satisfied with EPA standar through 7 cycles of freezing/thawing process, this mixture can be applied as a liner in landfill final cover system.

Case Studies of Geophysical Mapping of Hazard and Contaminated Zones in Abandoned Mine Lands (폐광 부지의 재해 및 오염대 조사관련 물리탐사자료의 고찰)

  • Sim, Min-Sub;Ju, Hyeon-Tae;Kim, Kwan-Soo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.525-534
    • /
    • 2014
  • Environmental problems typically occurring in abandoned mine lands (AML) include: contaminated and acidic surface water and groundwater; stockpiled waste rock and mill tailings; and ground subsidences due to mining operations. This study examines the effectiveness of various geophysical techniques for mapping potential hazard and contaminated zones. Four AML sites with sedimentation contamination problems, acid mine drainage (AMD) channels, ground subsidence, manmade liner leakage, and buried mine tailings, were selected to examine the applicability of various geophysical methods to the identification of the different types of mine hazards. Geophysical results were correlated to borehole data (core samples, well logs, tomographic profiles, etc.) and water sample data (pH, electrical conductivity (EC), and heavy metal contents). Zones of low electrical resistivity (ER) corresponded to areas contaminated by heavy metals, especially contamination by Cu, Pb, and Zn. The main pathways of AMD leachate were successfully mapped using ER methods (low anomaly peaks), self-potential (SP) curves (negative peaks), and ground penetrating radar (GPR) at shallow penetration depths. Mine cavities were well located based on composite interpretations of ER, seismic tomography, and well-log records; mine cavity locations were also observed in drill core data and using borehole image processing systems (BIPS). Damaged zones in buried manmade liners (used to block descending leachate) were precisely detected by ER mapping, and buried rock waste and tailings piles were characterized by low-velocity zones in seismic refraction data and high-resistivity zones in the ER data.