• Title/Summary/Keyword: 광발광 스펙트럼

Search Result 126, Processing Time 0.023 seconds

Growth and photocurrent study on the splitting of the valence band for $CuInSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)범에 의한 $CuInSe_2$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong Myungseak;Hong Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.244-252
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuInSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $_CuInSe2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62\times10^{16}/\textrm{cm}^3$, 296 $\textrm{cm}^2$/Vㆍs at 293 K, respectively. The temperature dependence of the energy band gap of the $CuInSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 1.1851 eV -($8.99\times10^{-4} eV/K)T^2$(T + 153 K). The crystal field and the spin-orbit splitting energies for the valence band of the CuInSe$_2$ have been estimated to be 0.0087 eV and 0.2329 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the Δso definitely exists in the $\Gamma$6 states of the valence band of the $CuInSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-, B_1$-와 $C_1$-exciton peaks for n = 1.

Photocurrent study on the splitting of the valence band and growth of $CdGa_2Se_4$ single crystal thin film by hot wall epitaxy (Hot Wall epitaxy(HWE)법에 의한 $CdGa_2Se_4$ 단결정 박막의 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.5
    • /
    • pp.179-186
    • /
    • 2007
  • Single crystal $CdGa_2Se_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with the hot wall epitaxy(HWE) system by evaporating the polycrystal source of $CdGa_2Se_4$ at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of single crystal $CdGa_2Se_4$ thin films measured with Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3},\;345cm^2/V{\cdot}s$ at 293 K, respectively. The photocurrent and the absorption spectra of $CdGa_2Se_4/SI$(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $CdGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation $E_g(T)=2.6400eV-(7.721{\times}10^{-4}eV/K)T^2/(T+399K)$. Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) far the valence band of the $CdGa_2Se_4$ have been estimated to be 106.5 meV and 418.9 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-},\;B_{1^-},\;and\;C_{11}-exciton$ peaks.

Growth and Properties of GaN by HVPE Method. (HVPE법에 의한 GaN의 성장과 특성)

  • Kim, Seon-Tae;Mun, Dong-Chan;Hong, Chang-Hoe
    • Korean Journal of Materials Research
    • /
    • v.6 no.5
    • /
    • pp.457-461
    • /
    • 1996
  • HVPE(hydride vapor phase epitaxy)법을 이용하여 C(0001)면의 사파이어 기판위에 GaN 박막을 성장하였다. 110$0^{\circ}C$의 온도에서 박막의 성장률은 120$\mu\textrm{m}$/hr이었고, 사파이어 기판과 GaN사이의 격자상수와 열팽창계수차로 인하여 많은 크랙이 존재하였다. 두께가 20$\mu\textrm{m}$인 GaN의 (0002)면에 대한 X-선 회절피크의 반치폭은 576초 이었다. 10K의 온도에서 측정된 광루미네센스 스펙트럼에서는 강한 강도의 속박여기자에 의한 피크(I2)와 약한 강도의 도너-억셉터 쌍 사이의 재결합에 의한 피크가 나타났으며, 깊은 준위로부터의 발광은 검출되지 않았다. GaN 박막의 전기전도형은 n형 이었고, 전자이동도와 캐리어농도는 각각 72$\textrm{cm}^2$/V-sec와 6x1018cm-3이었다.

  • PDF

Emitting characteristics of poly(3-octylthiophene) electroluminescent devices (Poly(3-octylthiophene) 전계발광소자의 발광특성)

  • Seo, Bu-Wan;Kim, Ju-Seung;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.131-134
    • /
    • 2000
  • Electroluminescent[EL] from conjugated polymers has recently received great attention because polymer light-emitting diodes[LEDs] clearly have potential for applications such as large-area displays. The operation of polymer LEDs is based on double injection of electrons and holes from the electrodes, followed by formation of excitons whose radiative decay results in light emission at wavelength characteristic to the material In this paper, we fabricated the single layer EL device using poly(3-octylthiophene)[P3OT] as emitting material. The orange-red light was clearly visible in a dark room Maximum peak wavelength of EL spectrum saw at 640nm in accordance with photon energy 1.9eV. And we know that ionization energy of P3OT is 4.7eV from the cyclic voltammetry.

  • PDF

The study of growth and characterization of $AgInSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)에 의한 $AgInSe_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.197-206
    • /
    • 1999
  • The stochiometric mixture of evaporating materials for the $AgInSe_2$single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the $AgInSe_2$polycrystal, it was found tetragonal structure whose lattice constant $a_0$ and $C_0$ were 6.092 $\AA$ and 11.688 $\AA$, respectively. To obtain the single crystal thin films of AgInSe$_2$, the mixed crystal was deposited on thoroughly etched semi-insulator GaAs(100) substrate by HWE system. The source and substrate temperature were fixed to $610^{\circ}C$ and $450^{\circ}C$ respectively, and the thickness of the single thin films was obtained to 3.8 $\mu\textrm{m}$. The crystallization of single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray dirrfaction (DCXD). The Hall effect was measured by the method of van der Pauw and carrier density and mobility dependence on temperature were studied. The carrier density and mobility of $AgInSe_2$single crystal thin films deduced from Hall data are $9.58{\times}10^{22} electron/m^3,\; 3.42{\times}10^{-2}m^2/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $AgInSe_2$single crystal thin film, the spin orbit coupling $\Delta$So and the crystal field splitting $\Delta$Cr were obtained to 0.29 eV and 0.12 eV at 20 K respectively. From PL peaks measured at 20 K, 881.1 nm (1.4071 eV) and 882.4 nm (1.4051 eV) mean $E_x^U$ the upper polariton and $E_x^L$ the lower polariton of the free exciton $(E_x)$, also 884.1 nm (1.402 eV) express $I_2 peak of donor-bound exciton emission and 885.9 nm (1.3995 Ev) emerges $I_1$ peak of acceptor-bound exciton emission. In addition, the peak observed at 887.5 nm (1.3970 eV) was analyzed to be PL peak due to DAP.

  • PDF

Opticsal Characteristics of Bismuth-doped Aluminosilicate Glass Codoped with Li and Ge (Bi 첨가 알루미노실리케이트 유리에서 Li 및 Ge 공첨가가 광 특성에 미치는 영향)

  • Seo, Young-Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.221-225
    • /
    • 2007
  • The possibility of improving amplification characteristics and lowering the melting point of bismuth-doped aluminosilicate glass as a new amplification material, which has broadband near-infrared emission at 1300 nm regions, was investigated. Spectroscopic analysis of bismuth-doped aluminosilicate glass shows that the addition of an alkali metal oxide, $Li_{2}O$ increases FWHM of fluorescence spectrum but decreases fluorescence intensity, while $GeO_{2}$ composition increases both FWHM of fluorescence spectrum and fluorescence intensity. Also, excellent optical amplification gain characteristics in a $GeO_{2}$-added sample were observed.

Optical Simulation Study of the Improvement of Color-rendering Characteristics of White Light-emitting Diodes by Using Red Quantum-dot Films (적색 양자점 필름을 이용한 백색 발광 다이오드의 연색성 개선에 대한 광학 시뮬레이션 연구)

  • Lee, Gi Jung;Hong, Seung Chan;Lee, Jung-Gyun;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.4
    • /
    • pp.163-171
    • /
    • 2021
  • Conventional white light-emitting diodes (LEDs) for lighting applications consist of blue LEDs and yellow phosphors, the spectrum of which lacks deep red. To improve the color-rendering characteristics of white LEDs, a red quantum-dot film was applied to the diffuser plate of LED lighting. The mean free paths of the quantum dots and the concentration of the TiO2 particles in the diffuser plate were adjusted to optimize the optical structure of the lighting. The color-rendering index (CRI) was greater than 90 for most conditions, which demonstrates that adoption of the red quantum-dot film is an effective way for improving the color-rendering properties of conventional white LEDs. The angular dispersion of color coordinates could be removed by utilizing the optical cavity formed between the diffuser plate and the reflector on the bottom of the lighting, where multiple passages of the light through the quantum-dot film reduced the differences in optical path length depending on the viewing angle.

Growth and effect of thermal annealing for $AgGaS_2$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $AgGaS_2$ 단결정 박막 성장과 열처리 효과)

  • Moon Jongdae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • A stoichiometric mixture of evaporating materials for AgGaS₂ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, AgGaS₂ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were 590℃ and 440℃, respectively. The temperature dependence of the energy band gap of the AgGaS₂ obtained from the absorption spectra was well described by the Varshni's relation, E/sub g/(T) = 2.7284 eV - (8.695×10/sup -4/ eV/K)T²/(T + 332 K). After the as-grown AgGaS₂ single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of AgGaS₂ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of V/sub Ag/, V/sub s/, Ag/sub int/, and S/sub int/ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Ag-atmosphere converted AgGaS₂ single crystal thin films to an optical n-type. Also, we confirmed that Ga in AgGaS₂/GaAs crystal thin films did not form the native defects because Ga in AgGaS₂ single crystal thin films existed in the form of stable bonds.

Growth and effect of thermal annealing for $AgGaSe_2$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $AgGaSe_2$ 단결정 박막 성장과 열처리 효과)

  • Baek, Seung-Nam;Hong, Kwang-Joon;Kim, Jang-Bok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.189-197
    • /
    • 2006
  • A stoichiometric mixture of evaporating materials for $AgGaSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy(HWE) system. The source and substrate temperatures were $630^{\circ}C\;and\;420^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.9501eV-(8.79x10^{-4}eV/K)T^2(T+250K)$. After the as-grown $AgGaSe_2$ single crystal thin films was annealed in Ag-, Se-, and Ga-atmospheres, the origin of point defects of $AgGaSe_2$ single crystal thin films has been investigated by the photoluminescence (PL) at 10K. The native defects of $V_{Ag},\;V_{Se},\;Ag_{int},\;and\;Se_{int}$ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaSe_2$ single crystal thin films to an optical p-type. Also, we confirmed that Ga in $AgGaSe_2$/GaAs did not form the native defects because Ga in $AgGaSe_2$ single crystal thin films existed in the form of stable bonds.

Preparation and Properties of Eu3+ Doped Y2O3 Nanoparticles with a Solvothermal Synthesis Using the Ethylene Glycol (에틸렌 글리콜을 이용하여 용매열 합성으로 Eu3+가 도핑된 Y2O3 나노 입자의 제조 및 특성)

  • 신수철;조태환
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.709-714
    • /
    • 2003
  • Eu doped $Y_2$ $O_3$ nanoparticles were prepared with the solvothermal synthesis using the ethyleneglycol solvent at 20$0^{\circ}C$ for 3-5 h and then annealed in air at 1000-140$0^{\circ}C$ for 2-4 h. The X-ray diffraction pattern of annealed crystals at 100$0^{\circ}C$ for 2 h could be indexed as pure cubic cell of $Y_2$ $O_3$ phase with lattice parameters a=10.5856 $\AA$ which is very close to the reported data (JCPDS Card File, 41-1105 a=10.6041 $\AA$). Average size of prepared phosphor particles have about 100 nm, which were spherical morphology. The phosphor particle sizes decreased and the emission intensity increased at the annealing temperature. Though PL spectrum analysis, the 3% Eu doped $Y_{2-x}$ $O_3$:E $u_{x}$ $^{3+}$(x=0.06) phosphor showed the excitation spectrum at 250 nm wavelength and the maximum emission spectrum at 611 nm wavelength.