• Title/Summary/Keyword: 광물상 침전물

Search Result 38, Processing Time 0.023 seconds

Mineralogy of Secondary Phosphates and Sulfates Precipitated within the Sequence of Bat Guano Deposits in the Gossi Cave, Korea (고씨동굴 박쥐배설물 (Bat Guano) 퇴적층에 기인된 이차 인산염 및 황산염광물 특성)

  • Jun, Chang-Pyo;Lee, Seong-Joo;Kong, Dal-Yong;Kang, Il-Mo;Song, Yun-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.395-402
    • /
    • 2010
  • Mineralogical characterization was performed for the mineral assemblages precipitated at the boundary between limestone bedrock and bat guano deposits in the Gossi Cave, Korea. Francoanellite, taranakite, ardealite, brushite and monetite are observed as phosphate minerals and gypsum and a small amount of barite as sulfate minerals in the guano deposits. With the increase of depth, phosphates are changed as following sequence: taranakite ${\rightarrow}$ francoanellite ${\rightarrow}$ ardealite ${\rightarrow}$ brushite ${\rightarrow}$ monetite. This sequence indicates that the major parameters controlling the physico-chemical conditions under which these mineral assemblages were deposited are pH and relative humidity.

Investigation of Corrosion Minerals from the Remediation for TCE-Contaminate d Groundwater (TCE로 오염된 지하수 정화시 부식 광물에 대한 연구)

  • Moon, Ji-Won;Moon, Hi-Soo;Yungoo Song;Kang, Jin-Kyoo;Yul Roh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.107-123
    • /
    • 2003
  • The objective of this study was to investigate mineral precipitates, which derived from the zero valent iron (ZVI) corrosion during TCE dechlorination and to find the controlling factors in mineral precipitates. A series of column experiemnts were conducted to evaluate the location of ZVI and the effects of electrode arrangements in electro-enhanced permeable reactive barrier (E2PRB) systems. Based on mineralogical study, ZVI samples near the influent port had more lepidocrocite, ferrihydrite or Fe (oxy)hydroxide, and (phospho)siderite while backward samples had more akaganeite, magnetite/maghemite, and intermediate green rust (GR) I and GR II. A suite of mineral distribution was preferabley related to the dissolved oxygen and the increased pH. Controlling factors of mineral precipitates in an E2PRB system were found to be (1) pH, (2) dissolved oxygen, (3) the types of Fe intermediates, and (4) anionic species to form complex strongly.

Preliminary Study on the Phase Transition of White Precipitates Found in the Acid Mine Drainage (산성광산배수에서 발견되는 흰색침전물의 상전이에 대한 예비 연구)

  • Yeo, Jin Woo;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.79-86
    • /
    • 2019
  • The white aluminum phases in acid mine drainage usually precipitates when mixed with stream waters with relatively high pH. The minerals in white precipitates play important roles in controlling the behavior of heavy metals by adsorbing and coprecipitation. By the phase transition of these minerals in white precipitates, dissolution and readsorption of heavy metals may occur. This study was conducted to obtain preliminary information on the phase transition of the mineral phases in white precipitates. In this study, the mineral phase changes in the white precipitates collected from the stream around Dogye Mining Site over time were investigated with different pH values and temperatures. White precipitates consist mainly of basaluminite, amorphous $Al(OH)_3$ and a small amount of $Al_{13}$-tridecamer. During aging, the incongruent dissolution of the basaluminite occurs first, increasing the content of the amorphous $Al(OH)_3$. After that, pseudoboehmite is finally precipitated following the precursor phase of pseudoboehmite. At $80^{\circ}C$, this series of processes was clearly observed, but at relatively low temperatures, no noticeable changes were observed from the initial condition with coexisting basaluminite and amorphous $Al(OH)_3$. At high pH, the desorption of $SO{_4}^{2-}$ group in basaluminite was initiated to promote phase transition to the pseudoboehmite precursor. Over time, the solution pH decreases due to the dissolution and phase transition of the minerals, and even after the precipitation of pseudoboehmite, only the particle size slightly increased but no clear cystal form was observed.

A Study on the Relationships between White Wares and Raw Materials Excavated at Goseong-ri Kiln Site in Chuncheon, Yeongseo Province, Gangwon-do (강원 영서지역 춘천 고성리 가마터 출토 백자 및 태토 원료의 상관관계 연구)

  • Lee, Byeong Hoon
    • Journal of Conservation Science
    • /
    • v.36 no.3
    • /
    • pp.152-161
    • /
    • 2020
  • The purpose of this study was to compare the chemical properties of white soil and refined clay sediment, which are produced early in the refining process. The characteristics of the white wares made at the kiln site in Goseong-ri, Chuncheon were also examined. Three groups of materials were examined: white wares excavated from the white wares kiln, raw material from white soil collected from the surface, and a refined clay sediment group. There were also three analysis methods, which were a main components analysis, a trace components analysis, and a mineral analysis. The main components analysis found that the white wares clay was in the RO24.04~4.28 and the RO + R2O 0.30~0.31 mole areas, which were similar to the results for the refined clay sediment. However, the refining process used to produce better quality white wares meant that the large differences in the early white soil raw material appeared in the refined sediment. The mineral phase analysis showed that the crystals detected in the early white soil raw materials and refined clay sediment were almost identical. However, quartz and mullite mineral phases, which can occur above a certain temperature, were detected in the excavated white wares clay. Rare earth elements that were not affected by the pottery making process and the weathering of clay materials were found to have the same origin in all three groups.

Geochemistry and Mineralogical Characteristics of Precipitate formed at Some Mineral Water Springs in Gyeongbuk Province, Korea (경북지역 주요 약수의 지화학과 침전물의 광물학적 특성)

  • Choo, Chang-Oh;Lee, Jin-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.139-151
    • /
    • 2009
  • Mineralogical characteristics of secondary precipitate formed at some mineral water springs in Gyeongbuk Province, Korea were studied in relation to water chemistry. The chemical water types of mineral water springs are mostly classified as $Ca-HCO_3$ type, but $Na(Ca)-HCO_3$ and $Ca-SO_4$ types are also recognized. Ca, Fe, and $HCO_3\;^-$ are the most abundant components in the water. The pH values of most springs lie in 5.76${\sim}$6.81, except Hwangsu spring having pH 2.8. Saturation indices show that all springs are supersaturated with respect to iron minerals and oxyhydroxides such as hematite and goethite. The result of particle size analysis shows that the precipitate is composed of the composite with various sizes, indicating the presence of iron minerals susceptible to a phase transition at varying water chemistry or the mixtures consisting of various mineral species. The particle size of the reddish precipitate is larger than that of the yellow brown precipitate. Based on XRD and SEM analyses, the precipitate is mostly composed of ferrihydrite (two-line type), goethite, schwertmannite, and calcite, with lesser silicates and manganese minerals. The most abundant mineral fanned at springs is ferrihydrite whose crystals are $0.1{\sim}2\;{\mu}m$ with an average of $0.5\;{\mu}m$ in size, characterized by a spherical form. It should be interestingly noted that schwertmannite forms at Hwangsu spring whose pH is very low. At Shinchon spring, Gallionella ferruginea, one of the iron bacteria, is commonly found as an indicator of the important microbial activity ascribed to the formation of iron minerals because very fine iron oxides with a spherical form are closely distributed on surfaces of the bacteria. A genetic relationship between the water chemistry and the formation of the secondary precipitate from mineral water springs was discussed.

Transformation of Schwertmannite to Goethite and Related Behavior of Heavy Metals (슈베르트마나이트-침철석 전이 및 이와 관련된 중금속의 거동)

  • Kim, Heon-Jung;Kim, Yeong-Kyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • The mineral phases precipitated in the swamp built for the treatment of the mine drainage of the Dalsung Mine were investigated to reveal the mineralogical changes from schwertmannite to goethite and related behavior of heavy metals. Our XRD results show that most schwertmannite were transformed to goethite except the small portions of the samples in the uppermost part. No significant morphological changes were observed in the samples during mineral transformation by SEM, indicating that this transformation process occurred not from dissolution-precipitation process, but in solid state. Among heavy metals sorbed or coprecipitated in the mineral phases, Pb and Cu concentrations were relatively higher compared with their concentrations in the mine drainage. The relative concentrations of other heavy metals show similar values. The heavy metal concentration in the minerals do not show noticeable differences from uppermost schwertmannite to lower goethite samples, indicating the transformation process without any leaching or additional sorption of heavy metals in the solid state.

Chemical Properties of Mineral Surfaces and Metal Ion Sorption: A Review (광물표면의 화학적 특성과 금속이온 수착의 고찰: A Review)

  • Yoon, Soh-Joung
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.205-215
    • /
    • 2012
  • Metal ions, toxic or potentially toxic to biota and human beings, can be immobilized by sorption onto the mineral surfaces in soils and sediments. This article briefly explains theories regarding the chemical properties of mineral surfaces to sorb metal ions and processes of extended X-ray absorption fine structure (EXAFS) analysis for sorption study, and reviews atomic-scale findings on metal sorption on mineral surfaces. The theoretical understanding on the chemistry of mineral surfaces and metal sorption is fundamental to the proper analysis of the atomic-scale spectroscopy to determine the sorption phases. Atomic-scale findings on metal sorption phases discussed here include co-precipitation, ternary complexation, aging effects, and desorption possibilities, as well as outer-sphere complexation, inner-sphere complexation, and surface precipitation.

Changes of Mineralogical Characteristics of Precipitates in Acid Mine Drainage of the Dalsung Mine and Related Changes of Trace Elements (달성광산 산성광산배수 침전물의 시간에 따른 광물상 특성 변화 및 이에 따른 미량원소의 거동 변화)

  • Yoon, Young Jin;Kim, Yeongkyoo;Lee, Seong-joo
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.531-540
    • /
    • 2022
  • Various iron minerals that precipitate in acid mine drainage have a great influence on the concentration change and mobility of trace elements in the drainage during phase transition to other minerals as well as the precipitation process. This study investigated the change of mineral properties and the behaviors of trace elements influenced by pH and time for the precipitates collected from the acid mine drainage treatment system of the Dalsung mine, where schwertmannite is mainly precipitated. However, the main mineral precipitated in the drainage was goethite, suggesting schwetmannite has already undergone a phase transition to goethite to some extent, and it was observed that at higher pH, the peak width at half maximum of XRD peak was narrower. This can be interpreted as the transformation of small amount of amorphous schwetmannite to goethite or an increase in the crystallinity of goethite, and it showed that the higher the pH, the greater this change was. The concentration of Fe was also greatly affected by the pH values, and as the pH increased, the concentration of Fe in the drainage decreased. With increasing time, the Fe concentration increased and then decreased, which can be interpreted to indicate the dissolution of schwertmannite and precipitation of goethite. This mineral change probably resulted in the rapid increase of the concentration of S at initial stage, but its concentration was stabilized later. The concentration of S is also related to the stability of schwetmannite, showing a high concentration at a low pH at which schwertmannite is stable and a low concentration at a high pH at which goethite is stable. The trace elements present as cations in the drainage also showed a close relationship with the pH, generally the lower the pH, the higher the concentration, due to the solubility changes by the pH, and the precipitation and the changes in mineral surface charge at high pH. On the other hand, in the case of As, existing as an anion, although it showed a high concentration at low pH, its concentration increased with time at all pH values, which is probably related to the concentration of Fe which can be coprecipitated in the drainage, and the increase of As concentration with time is also considered to be related to the decrease in schwertmannite rather than the mineral surface charge.

Crystal Chemistry and Paragenesis of Aluminum Sulfphates from Mudstones of the Yeonil Group (II): Alunite-halloysite (연일층군 이암에서 산출되는 알루미늄 황산염 광물의 결정화학 및 생성 (II): 알루나이트-할로이사이트)

  • 노진환;최진범
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.1-14
    • /
    • 2000
  • 알루나이트는 포항지역의 제3기 연일층군의 이암 층내의 탄산염 결핵체 주변에서 할로이사이트와 함께 극미립 변질물 (1-2 $\mu\textrm{m}$)로서 산출된다. 알루나이트는 정육면체와 유사한 능면체 결정형을 이루고 침상 내지 단주상의 할로이사이트와 밀접한 공생관계를 이룬다. X-선회절 분석에 의해서 이 알루나이트는 a=6.9897(1) $\AA$, c=17.2327(4)$\AA$, V=728.75(3) $\AA$3의 격자상수값을 갖는 것으로 밝혀졌다. X-선형광된 이 알루나이트의 화학식은 (K0.94N0.06)(Al2.55Fe3+0.45)(SO4)2(OH)6 으로서, 나트로알루나이트 단성분을 6-7 mole%정도 함유하는 것으로 분석되었다. 또한 시차열분석 (TG-DTG-DTA)을 통해서 알루나이트의 승화성 성분들 (H2O와 SO3)의 존재와 함유 정도를 조사하였고, 고온X-선회절분석을 병행하여 이 광물의 OH기의 이탈 반응 (52$0^{\circ}C$)과 고온상으로의 전이 반응 ($600^{\circ}C$$700^{\circ}C$)을 감정 하였다. K/Ar 법으로 측정된 알루나이트의 생성 연대 ($0.342\pm$0.008 Ma)와 안정동위원소들의 분석 결과 ($\delta$18Oso4=-1.7, $\delta$DSMOW=-31, $\delta$34S=-10.8)는 이 알루미늄 황산염 광물이 연일충군의 융기 이후에 야기된 민물의 유입에 의한 표성기원의 변질작용의 결과로 생성되었음을 지시한다. 알루나이트+할로이사이트 공생군의 침전은 이암 내에서 조성된 강산성 (pH=2-3)의 알루미늄 황산염 용액이 탄산염 결핵체를 만나 반응하여 pH가 국지적으로 증가되어 (pH=4) 과포화되는 과정에 의해서 야기되었다. 컴퓨터를 이용한 Al3+의 포화지수에 관한 화학적 평형 모델링 실험 결과, 알루미늄 황산염 용액으로부터의 알루나이트와 할로이사이트의 침전은 pH=4 및 \ulcornerSO42-=10-4M 조건에서 K+과 Si(OH)4의 농도가 10-4M 이상 유지되어야 가능한 것으로 밝혀졌다.

  • PDF

Study for the Geochemical Reaction of Feldspar with Supercritical $CO_2$ in the Brine Aquifer for $CO_2$ Sequestration (이산화탄소의 지중저장 대염수층에서 과임계이산화탄소에 의한 장석의 지화학적 변화 규명)

  • Choi, Won-Woo;Kang, Hyun-Min;Kim, Jae-Jung;Lee, Ji-Young;Lee, Min-Hee
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.403-412
    • /
    • 2009
  • The objective of this study is to investigate the geochemical change of feldspar minerals by supercritical $CO_2$, which exists at $CO_2$ sequestration sites. High pressurized cell system (100 bar and $50^{\circ}C$) was designed to create supercritical $CO_2$ in the cell and the surface change and the dissolution of plagioclase and orthoclase were observed when the mineral surface reacted with supercritical $CO_2$ and water (or without water) for 30 days. The polished slab surface of feldspar was contacted with supercritical $CO_2$ and an artificial brine water (pH 8) in the experiments. The experiments for the reaction of feldspar with only supercritical $CO_2$ (without brine water) were also conducted. Results from the first experiment showed that the average roughness value of the plagioclase surface was 0.118 nm before the reaction, but it considerably increased to 2.493 nm after 30 days. For the orthoclase, the average roughness increased from 0.246 nm to 1.916 nm, suggesting that the dissolution of feldspar occurs in active when the feldspars contact with supercritical $CO_2$ and brine water at $CO_2$ sequestration site. The dissolution of $Ca^{2+}$ and $Na^+$ from the plagioclase occurred and a certain part of them precipitated inside of the high pressurized cell as the form of amorphous silicate mineral. For the orthoclase, $Al^{3+}$, $K^+$, and $Si^{+4}$ were dissolved in order and the kaolinite was precipitated. In the experiments without water, the change of the average roughness value and the dissolution of feldspar scarcely occurred, suggesting that the geochemical reaction of feldspars contacted with supercritical $CO_2$ at the environment without the brine water is not active.