• Title/Summary/Keyword: 광모듈

Search Result 850, Processing Time 0.032 seconds

A study of high-efficiency rotating condensing hybrid solar LED street light module system (고효율 회전 집광형 하이브리드 태양광 LED 가로등 모듈 시스템 연구)

  • Min, Kyung-Ho;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.50-55
    • /
    • 2021
  • Solar power generation, which is one of the methods of using solar energy, has a high possibility of practical implementation compared to other renewable energy power generation, and it has the characteristic that it can generate as much power as needed in necessary places. In addition, maintenance is easy, unmanned operation is possible, and power management can be performed more efficiently if operated in a hybrid method with existing electric energy. Therefore, in this study, numerical analysis using a computer program was performed to analyze the efficient operation and performance improvement of solar energy of the rotating condensing type solar LED street lamp. As a result, the two-axis tracking type could obtain 15.23 % more electricity per year than the fixed type, and additional auxiliary power generation was required for the fixed type by 19 % per year than the tracking type. As a result of computational fluid dynamics(CFD) simulation for PV module surface temperature prediction, the The surface temperature of the Photovoltaics(PV) module incident surface was predicted to be about 10℃ higher than that of the fixed type.

A Study on Correlation Peel Strength and the Efficiency of Shingled Modules According to Curing Condition of Electrically Conductive Adhesives (슁글드 모듈에서 경화조건에 따른 ECA 접합강도와 효율의 상관관계에 관한 연구)

  • Jun, Dayeong;Son, Hyoungin;Moon, Jiyeon;Cho, Seonghyeon;Kim, Sung hyun
    • Current Photovoltaic Research
    • /
    • v.9 no.2
    • /
    • pp.31-35
    • /
    • 2021
  • Shingled module shows high ratio active area per total area due to more efficient packing without inactive space between cells. The module is fabricated by connecting the pre-cut cells into the string using electrically conductive adhesives (ECA). ECAs are used for electric and structural connections to fabricate the shingled modules. In this work, we investigated a correlation between ECA peel strength and the efficiency of pre-cut 5 cells module which are fabricated according to ECA interconnection conditions. The curing conditions are varied to determine whether ECA interconnection properties can affect module properties. As a result of the peel test, the highest peel strength was 1.27 N/mm in the condition of 170℃, the lowest peel strength was 0.89 N/mm in the condition of 130℃. The efficiency was almost constant regardless of the curing conditions at an average of 20%. However, the standard deviation of the fill factor increased as the adhesive strength decreased.

Maximum Power Point Tracking Technique of PV System for the Tracking of Open Voltage according to Solar Module of Temperature Influence (태양광 모듈 온도 영향에 따른 개방전압 추종을 위한 PV 시스템의 최대 전력 점 기법)

  • Seo, Jung-Min;Lee, Woo-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.38-45
    • /
    • 2021
  • The photovoltaic module has the characteristic of changing its output characteristics depending on the amount of radiation and temperature, where the arrays that connect them in series and parallel also have the same characteristics. These characteristics require the MPPT technique to find the maximum power point. Existing P&O and IncCond cannot find the global maximum power point (GMPP) for partial shading. Moreover, in the case of Improved-GMPPT and Enhanced Search-Skip-Judge-GMPPT, GMPP due to partial shading can be found, but the variation in the open voltage during temperature fluctuations will affect the operation of the Skip and will not be able to perform accurate MPPT operation. In this study, we analyzed the correlation between voltage, current, and power under solar module and array conditions. We also proposed a technique to find the maximum power point even for temperature fluctuations using not only the amount of radiation but also the temperature coefficient. The proposed control technique was verified through simulations and experiments by constructing a 2.5 kW single-phase solar power generation system.

Electrode Design for Electrode Formation and PV Module Integration Development (전극형성과 태양전지 모듈 일체화 기술 개발에 적용되는 태양전지 전극 설계 기술)

  • Park, Jinjoo;Jeon, Youngwoo;Jang, Minkyu;Kim, Minje;Lim, Donggun
    • Current Photovoltaic Research
    • /
    • v.9 no.4
    • /
    • pp.123-127
    • /
    • 2021
  • This study was on electrode design for the realization of a solar cell that combines electrode formation and module integration process to overcome printing limitations. We used the passivated emitter rear contact (PERC) solar cell. Wafer size was 156.75 mm ×156.75 mm. The fabricated cell results showed that the open-circuit voltage of 649 mV, short-circuit current density of 36.15 mA/cm2, fill factor of 68.5%, and efficiency of 16.06% with electrode conditions the 24BBs with the width 190 ㎛ and 90FBs with the width 45 ㎛. For improving efficiency, the characteristics of the solar cell were checked according to the change in the number of BBs and FBs and the change in line fine width. It is confirmed that the efficiency of the solar cell will be improved by increasing the number of FBs from 90 to 120, and increasing the line width of the FBs by about 10 ㎛ compared to the manufacturing solar cells.

A Study on the Output Characteristics According to the Cell Electrode Pattern for a Large-area Double-sided Shingled Module (대면적 양면형 슁글드 모듈을 위한 셀 전극 패턴에 따른 출력 특성에 관한 연구)

  • Seungah, Ur;Juhwi, Kim;Jaehyeong, Lee
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.64-69
    • /
    • 2022
  • Double-sided photovoltaic (PV) modules have received significant attention in recent years as a technology that can achieve higher annual energy production rates than single-sided modules. The shingled technology is a promising method for manufacturing high-density and high-power modules. These modules are divided by laser and joined with electrically conductive adhesives. The output efficiency of the divided cells depends on the division pattern and the electrode pattern, making it important to understand the output characteristics. In this study, the output characteristics of large-area double-sided light-receiving shingled cells with different split patterns and electrode patterns were investigated. The M6 size, with 6 divisions in the electrode pattern, had the highest efficiency when using 142 front fingers and 146 rear fingers. The M10 size, with 7 divisions, had the highest output when using 150 fingers equally in the front and rear. The M12 size, also with 7 divisions, showed the highest output characteristics when using 192 front fingers and 208 rear fingers.

Solar Cell Design for Large Area Multi Busbar Module Power Loss Reduction (대면적 Multi busbar 모듈 전력 손실 저감을 위한 태양전지 설계)

  • Juhwi Kim;Jaehyeong Lee
    • Current Photovoltaic Research
    • /
    • v.11 no.1
    • /
    • pp.34-37
    • /
    • 2023
  • Solar energy had become the main energy industry of renewable energy along with hydroelectric power generation. One of the technologies that contributed to the popularization of photovoltaic power and the decrease in the unit price of photovoltaic modules was the large-area solar cell. However, as the area increased, the light receiving area increased and the current value increased accordingly. Since power loss occurs when the current value was large, the number of busbar was increased to increase the current collection rate, and a technology to lower the current value through half-cutting was developed. The bus bar of the solar cell served as a passage through which the generated current was transmitted. This was because when the number of busbar decreases, the moving distance of electrons increased, so the amount of power generation decreases and when it increases, shadows occured. An important aspect of the electrode design was the optimal balance of these busbars and number of fingers. Therefore, in this study, the characteristics of the solar cell according to the number of front bus bars of the large-area solar cell were simulated using Griddler 2,5 pro. After selecting the number of busbar with the best characteristics, the difference was compared by varying the number of fingers and a better direction for the number of cutting was presented.

Design and Analysis of Collimator in Spectrophotometer for Transmission Spectroscopy of Exoplanets

  • Choi, Yeonho;Kim, Kang-Min;Park, Chan;Jang, Jeong-Gyun;Han, Inwoo;Lee, Byeong-Cheol;Jang, Bi-Ho;Lee, Jong-Ung;Jeong, Eui-Jeong;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.68.1-68.1
    • /
    • 2020
  • 외계행성 대기 연구를 위한 투과스펙트럼 관측에 적합한 측분광기를 개발하고 있다. 이 측분광기의 광학적 특성은 380~685nm의 파장범위, FOV 10', R>~400이며, 슬릿부, collimator, VPH grism, imaging lens와 CCD로 구성되어 있는데, 보현산천문대 1.8m 망원경의 CIM(Cassegrain Interface Module)에 카트리지 방식으로 장착되어 사용한다. 그 중 doublet 렌즈 2개를 대칭으로 배치하여 초점거리 280mm가 되도록 만든 collimator는 슬릿을 통과한 f/8 입사광에서 지름 35 mm의 pupil을 만드는데, 이곳에 VPH grism을 설치하였다. collimator 렌즈는 axial spring과 radial spring으로 알루미늄 barrel에 고정하였다. 이 collimator barrel은 CIM에 쉽게 장탈착 할 수 있도록 모듈화 하였다. Collimator Barrel에 대한 구조 해석 결과, 망원경 이동에 따른 중력에 의한 변형은 충분히 작았다. Grism은 슬라이딩 형태로 장착되어 영상 확인도 가능하도록 설계하였다.

  • PDF

A Study of Java-based PKI System for Secure Authentication on Mobile Devices (모바일 단말기 상에서 안전한 인증을 위한 자바 기반의 PKI 시스템 연구)

  • Choi, Byeong-Seon;Chae, Cheol-Joo;Lee, Jae-Kwang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.1005-1008
    • /
    • 2007
  • 모바일 네트워크 환경은 언제 어디서나 네트워크를 사용하는 모바일 서비스를 편리하게 사용할 수 있도록 해준다. 그러나 언제 어디서나 서비스를 제공받을 수 있다는 것은 언제 어디서든지 정보가 누출되거나 왜곡될 위험성 또한 존재하기 마련이다. 특히, 프라이버시 문제가 해결되지 않고서는 우리 일상생활과 융합되어 편리함을 제공해주는 모바일 네트워크 환경이 오히려 모바일 네트워크 감시 체제를 구축하는 심각한 역기능을 초래하게 될 것이다. 모바일 단말기들은 크기와 모양이 다양하고 컴퓨팅 연산 능력이 적은 저성능 휴대 장치들이 많기 때문에, 컴퓨팅 연산이 많이 요구되는 공개키 암호 기술을 저성능 모바일 단말기에 적용하기는 힘든 상황이다. 이에 본 논문에서는 프라이버시 문제를 해결하면서, 컴퓨팅 연산 능력이 적은 저성능 모바일 단말기에 적용할 수 있는 자바 기반의 암호 모듈 및 PKI 기반의 사용자 인증을 제안하고자 한다. 국내 표준 암호 알고리즘(SEED)과 인증서를 기반으로 세션키와 공개키를 조합함으로서 최소한의 암복호화 연산을 통해 인증 및 전자 서명을 제공하며, 이를 대표적인 모바일 단말기인 PDA 환경에서 세션키 분배 및 사용자 인증이 안전하게 이루어짐을 확인할 수 있었다.

Implementation a of data repeating system using solar charging and develop algorithm for data repeating in the pasture (산지초지에서 한우 활동량 정보 수집을 위한 데이터 중계 알고리즘 및 시스템 구현)

  • Kim, Suc-Jun;Kim, Jong-Won;Kim, Chun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.285-293
    • /
    • 2016
  • In the paper, we propose a data transmission repeating system that allows data transmission for the effective supervision of cows grazing in the pasture. It is normal practice to divide the pasture into different areas for the purpose of distributing the grazing. However, this makes it difficult to supply electrical power and transmit data, because some of the pastures are far away from the office used for collecting data. To solve this problem, we developed a repeating system that can allow data transmission in the pasture using a solar charging system that consists of a 60W solar panel, 12V/100A battery and 6A solar controller for the power supply and a data transmission algorithm which extends the range of data transmission when using the proposed repeating system. We verified the performance of the repeating system by checking whether the data transmission is successful or not when transmitting from various test points when there is an obstacle between the receiver and repeating system. We also verified the solar charging system by measuring the battery voltage when the system is operated continuously for 31 days and whether the system can supply sufficient power when the weather is cloudy or rainy for a few days. Finally, we verified the performance of the repeating system and data transmission algorithm by conducting experiments in a pasture.

Influence of temperature gradient induced by concentrated solar thermal energy on the power generation performance of a thermoelectric module (집중 태양열에 의한 온도구배가 열전발전모듈의 출력 성능에 미치는 영향)

  • Choi, Kyungwho;Ahn, Dahoon;Boo, Joon Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.777-784
    • /
    • 2017
  • Energy harvesting through a thermoelectric module normally makes use of the temperature gradient in the system's operational environment. Therefore, it is difficult to obtain the desired output power when the system is subjected to an environment in which a low temperature gradient is generated across the module, because the power generation efficiency of the thermoelectric device is not optimized. The utilization of solar energy, which is a form of renewable energy abundant in nature, has mostly been limited to photovoltaic solar cells and solar thermal energy generation. However, photovoltaic power generation is capable of utilizing only a narrow wavelength band from the sunlight and, thus, the power generation efficiency might be lowered by light scattering. In the case of solar thermal energy generation, the system usually requires large-scale facilities. In this study, a simple and small size thermoelectric power generation system with a solar concentrator was designed to create a large temperature gradient for enhanced performance. A solar tracking system was used to concentrate the solar thermal energy during the experiments and a liquid circulating chiller was installed to maintain a large temperature gradient in order to avoid heat transfer to the bottom of the thermoelectric module. Then, the setup was tested through a series of experiments and the performance of the system was analyzed for the purpose of evaluating its feasibility and validity.