• Title/Summary/Keyword: 관측위치오차

Search Result 336, Processing Time 0.042 seconds

Upgrading Filter Position Mechanism of SQUEAN

  • Lee, Hye-In;Pak, Soojong;Ji, Tae-Geun;Park, Woojin;An, Jongho;Kim, Sanghyuk;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.74.1-74.1
    • /
    • 2016
  • 미국 텍사스 주 맥도날드 천문대에 위치한 2.1m 망원경에 부착된 SQUEAN (SED Camera for QUasars in EArly uNiverse)은 2010년부터 운용되고 있는 CQUEAN을 바탕으로 개발된 적외선 영역 광학기기이다. 20개의 필터 장착이 가능한 필터 휠 제어 시스템을 가지고 있는 SQUEAN 시스템은 SMOP (SQUEAN Main Observation software package), KFC82 (KHU Filter wheel Control software package for McDonald 82 inch Telescope), KAP82 (KHU Auto-guiding software Package for McDonald 82 inch Telescope) 등으로 구성되어 있다. 그러나 대형 필터 휠을 제어하는 모터의 토크부족과 감속기의 백래시(Backlash)의 영향으로 오프셋의 오차가 커서 초기위치의 재설정 없이 하룻밤 이상 관측을 지속하는데 어려움이 있었다. 토크가 크고 인코더가 장착된 모터 교체와 제어 프로그램 등을 변경하고, 백래시의 영향을 최소화할 수 있도록 소프트웨어로 보정하였다. 또한, SMOP로부터 네트워크 통신을 통해 초기화용 필터 마스크(Initial Filter Mask:IFM)를 제작하여 돔 플랫 이미지에서 정확한 필터의 위치를 측정하는 기능을 도입하였다. 이 발표에서는, 개선된 하드웨어 및 소프트웨어의 내용과 테스트한 결과에 대해 보여준다.

  • PDF

A Localized Secular Variation Model of the Geomagnetic Field Over Northeast Asia Region between 1997 to 2011 (지역화된 동북아시아지역의 지구자기장 영년변화 모델: 1997-2011)

  • Kim, Hyung Rae
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.51-63
    • /
    • 2015
  • I produced a secular variation model of geomagnetic field by using the magnetic component data from four geomagnetic observatories located in Northeast Asia during the years between 1997 and 2011. The Earth's magnetic field varies with time and location due to the dynamics of fluid outer core and the magnetic observatories on the surface measure in time series. To adequately represent the magnetic field or secular variations of the Earth, a spatio-temporal model is required. In making a global model, satellite observations as well as limited observatory data are necessary to cover the regions and time intervals. However, you need a considerable work and time to process a huge amount of the dataset with complicated signal separation procedures. When you update the model, the same amount of chores is demanded. Besides, the global model might be affected by the measurement errors of each observatory that are biased and the processing errors in satellite data so that the accuracy of the model would be degraded. In this study, as considered these problems, I introduced a localized method in modeling secular variation of the Earth's magnetic field over Northeast Asia region. Secular variation data from three Japanese observatories and one Chinese observatory that are all in the INTERMAGNET are implemented in the model valid between 1997 to 2011 with the interval of 6 months. With the resulting model, I compared with the global model called CHAOS-4, which includes the main, secular variation and secular acceleration models between 1997 to 2013 by using the three satellites' databases and INTERMAGNET observatory data. Also, the geomagnetic 'jerk' which is known as a sudden change in the time derivatives of the main field of the Earth, was discussed from the localized secular acceleration coefficients derived from spline models.

Errors in Net Ecosystem Exchanges of CO2, Water Vapor, and Heat Caused by Storage Fluxes Calculated by Single-level Scalar Measurements Over a Rice Paddy (단일 높이에서 관측된 저장 플럭스를 사용할 때 발생하는 논의 이산화탄소, 수증기, 현열의 순생태계교환량 오차)

  • Moon, Minkyu;Kang, Minseok;Thakuri, Bindu Malla;Lee, Jung-Hoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.227-235
    • /
    • 2015
  • Using eddy covariance method, net ecosystem exchange (NEE) of $CO_2$ ($F_{CO_2}$), $H_2O$ (LE), and sensible heat (H) can be approximated as the sum of eddy flux ($F_c$) and storage flux term ($F_s$). Depending on strength and distribution of sink/source of scalars and magnitude of vertical turbulence mixing, the rates of changes in scalars are different with height. In order to calculate $F_s$ accurately, the differences should be considered using scalar profile measurement. However, most of flux sites for agricultural lands in Asia do not operate profile system and estimate $F_s$ using single-level scalars from eddy covariance system under the assumption that the rates of changes in scalars are constant regardless of the height. In this study, we measured $F_c$ and $F_s$ of $CO_2$, $H_2O$, and air temperature ($T_a$) using eddy covariance and profile system (i.e., the multi-level measurement system in scalars from eddy covariance measurement height to the land surface) at the Chengmicheon farmland site in Korea (CFK) in order to quantify the differences between $F_s$ calculated by single-level measurements ($F_s_{-single}$ i.e., $F_s$ from scalars measured by profile system only at eddy covariance system measurement height) and $F_s$ calculated by profile measurements and verify the errors of NEE caused by $F_s_{-single}$. The rate of change in $CO_2$, $H_2O$, and Ta were varied with height depending on the magnitudes and distribution of sink and source and the stability in the atmospheric boundary layer. Thus, $F_s_{-single}$ underestimated or overestimated $F_s$ (especially 21% underestimation in $F_s$ of $CO_2$ around sunrise and sunset (0430-0800 h and 1630-2000 h)). For $F_{CO_2}$, the errors in $F_s_{-single}$ generated 3% and 2% underestimation of $F_{CO_2}$ during nighttime (2030-0400 h) and around sunrise and sunset, respectively. In the process of nighttime correction and partitioning of $F_{CO_2}$, these differences would cause an underestimation in carbon balance at the rice paddy. In contrast, there were little differences at the errors in LE and H caused by the error in $F_s_{-single}$, irrespective of time.

Analysis of GPS signal environment at DGNSS stations (DGNSS 기준국 관측환경 분석)

  • Sohn, Dong-Hyo;Park, Kwan-Dong;Won, Ji-Hye;Choi, Yong-Kwon;Kee, Chang-Don
    • Journal of Navigation and Port Research
    • /
    • v.35 no.8
    • /
    • pp.625-629
    • /
    • 2011
  • In this study, we analyzed the signal environment of 17 DGNSS stations operated by DGPS Central Office through TEQC quality checking, visibility analysis and site visits. With TEQC, we produced times series of four indices of TEQC quality checking: observation ratio, L1 pseudorange multipath, L2 pseudorange multipath, and the frequency of cycle slip events. From visibility analysis, the directions where missing observations are happening were identified and the result was verified through onsite investigation. Without considering TEQC indices at the six sites(Palmido, Eochungdo, Geomundo, Pyeongchang, Seongju, and Chungju), the average TEQC indices were: 98% observation ratio, 0.19m of L1 pseudorange multipath, 0.71m of L2 pseudorange multipath, and 1.3 cycle slips per 1000 observations. The observation ratios at Palmido and Eochungdo were low. It was found that receiver settings were incorrect so that they could track the P2 signal of GPS satellites with L2C capability. No signal-blocking obstacles were found around the Geomundo station except the lighthouse. Thus, we guess that the poor TEQC indices at the site are believed to be caused by problems in the GPS hardware or cables. The low observation ratio at Pyeongchang is being caused by the surrounding hills blocking the satellite view from the south to the northwest directions. Even though all of four TEQC indices were bad at Seongju and Chungju stations, we found that the signal reception environment at the two sites is in good condition. We think that the quality indices got poor probably because of malfunctioning equipment. So, further investigation is needed for the Seongju and Chungju sites.

Analysis of Lake Water Temperature and Seasonal Stratification in the Han River System from Time-Series of Landsat Images (Landsat 시계열 영상을 이용한 한강 수계 호수 수온과 계절적 성충 현상 분석)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.253-271
    • /
    • 2005
  • We have analyzed surface water temperature and seasonal stratification of lakes in the Han river system using time-series Landsat images and in situ measurement data. Using NASA equation, at-satellite temperature is derived from 29 Landsat-5 TM and Landsat-7 ETM+ images obtained from 1994 to 2004, and was compared with in situ surface temperature on river-type dam lakes such as Paro, Chuncheon, Euiam, Chongpyong, Paldang, and with 10m-depth temperature on lake-type dam lake Soyang. Although the in situ temperature at the time of satellite data acquisition was interpolated from monthly measurements, the number of images with standard deviation of temperature difference (at-satellite temperature - in situ interpolated temperature) less than $2^{\circ}C$ was 24 on which a novel statistical atmospheric correction could be applied. The correlation coefficient at Lake Soyang was 0.915 (0.950 after correction) and 0.951-0.980 (0.979-0.997 after correction) at other lakes. This high correlation implies that there exist a mixed layer in the shallow river-like dam lakes due to physical mixing from continuous influx and efflux, and the daily and hourly temperature change is not fluctuating. At Lake Soyang, an anomalous temperature difference was observed from April to July where at-satellite temperature is $3-5^{\circ}C$ higher than in situ interpolated temperature. Located in the uppermost part of the Han river system and its influx is governed only by natural precipitation, Lake Soyang develops stratification during this time with rising sun elevation and no physical mixture from influx in this relatively dry season of the year.

Utilization of UAV Photogrammetry for Actual Condition Survey of Government Owned Lands (국·공유지 실태조사를 위한 UAV 사진측량의 활용성 검토)

  • LEE, Si-Wook;LEE, Jin-Duk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.80-91
    • /
    • 2021
  • The purpose of this study is to present the applicability to the effective survey into the actual condition of lands such as analysis of occupied location of government owned lands based on orthoimages created from aerial photographs taken by UAV. The boundary point coordinates and areas of the parcels were observed respectively by VRS-GNSS surveying and orthoimages for each land use of two categories of land, i.e. building site and farmland. As a result of comparing boundary point coordinates and areas extracted from UAV orthoimages with VRS-GNSS surveying data which were used as reference data, the RMS error of the coordinates for the boundary points was ±0.074m for both X and Y in the building site, and ±0.150m and ±0.127m for the X and Y respectively in the farmland. The positional error of the boundary point was 1.7~ 2 times higher in the farmland than in the building site where the boundary points were relatively clear. The RMS error of ±8.964㎡ of areas in the farmland was 4.7 times higher than that of ±1.898㎡ of areas in the building site. The area errors of all 22 parcels measured from the orthoimage were found to be within the allowed error range, indicating that it is feasible to apply the orthoimage generated by UAV to survey of government owned lands in terms of accuracy.

A source and phase identification study of the 10 December 2002 Cheolwon, Korea, earthquake of ML 3.6 (2002년 12월 10일 규모 3.6 철원지진의 진원요소 및 파상분석)

  • 김우한;박종찬;함인경;김성균;박창업
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.19-24
    • /
    • 2003
  • We analysed seismic phases recorded by the 10 December 2002 Cheolwon, Korea, earthquake of $M_{L}$ 3.6 and obtained source parameters such as hypocenter, origin time, earthquake magnitude. Velocity and acceleration records used in this study are from the KMA and KIGAM seismic networks. Due to the location of the epicenter in the north of the DMZ(Demilitarized Zone), direct Pg phases were recorded only at five stations in the area south of DMZ. Identification of refracted Pn phase as the first arrival is difficult in most stations. Therefore, the hypocenter determined by existing routine methods could be affected by a large error. In order to avoid the possibility of the problem, we employed a method of seismic phase analysis developed by Kim et al.. The direct, refracted, and reflected P and S phases were successfully identified using the method together with the travel time curve data. In order to improve the accuracy in determination of the hypocenter and origin time, we included PmP and SmS phases in the analysis in addition to the phases such as Pg, Pn, Sg and Sn. The epicenter, depth, and origin time of the Cheolwon earthquake determined based on data of 11 stations within 200km from the epicenter are $38.81^{\circ}$N, $127.22^{\circ}$E, 12.0km, and 7:42:51.4(local time), respectively. The average value of the local magnitude based on the Richter's definition from all the stations is 3.6 in $M_{L}$. This magnitude is smaller by 0.2 and 0.5 compared with magnitudes determined by KMA and KIGAM, respectively.

A Study on the Network Adjustment Analysis for Planimetric Positioning (수평위치 결정을 위한 망조정 해석에 관한 연구)

  • 유복모;조기성;이현직;곽동옥
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.2
    • /
    • pp.37-48
    • /
    • 1991
  • In this study, conventional network adjustment and combined network adjustment methods for single network adjustment methods for single network and centric combination network were compared by the analysis of root mean square error and standard error ellipse of observed points. It can be concluded from this study that for conventional surveying methods, the accuracy is in theorder of trilateration, traverse and triangulation, and for the case of combined surveying method, the accuracy is in the order of multilateration surveying, combined traverse and combined triangulation-trilateration surveying. And when establishing new control points, the accuracy can be improved by increasing redundant observations of centric combination network instead of using the single network. Also, in case of combined traverse surveying by adding observable laterals, accuracy level of trilateration could be achieved, and it was found that traverse is effective for large areas where sighting is easy, and combined traverse surveying is effective for urban areas where sighting is difficult.

  • PDF

High Speed and Robust Control System with Deadbeat Disturbance Observer for 3D Eye Imaging Equipment (망막의 3차원 영상화를 위한 데드비트 외란 관측기를 가진 고속, 고강성 제어 시스템)

  • 고종선;이태훈;김영일
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.5
    • /
    • pp.418-426
    • /
    • 2003
  • To show a retina shape and thickness on the computer monitor, a laser has been used in Scanning Laser Ophthalmoscope(SLO) equipment using the traveling difference. This method requires exact synchronous control of laser traveling in optic system to show a clear 3-dimensional image of retina To obtain this image, this exact synchronism is very important for making the perfect plane scanning. In this study, a high speed and synchronous control of the galvanometer to make 3-dimensional retina image is presented. For the more, deadbeat load torque observer is added to the PI controller for compensation of the position error arisen in the high speed control. As a result, the proposed control system has a robust and precise response against the load torque variation appeared in high speed control. A stability and usefulness are verified by the computer simulation and the experiment.

A Measurement of Target Displacement by Using GB-SAR Interferometry and Atmospheric Correction (GB-SAR의 간섭기법을 통한 물체의 변위 측정 및 대기보정)

  • Lee, Jae-Hee;Lee, Hoon-Yol;Cho, Seong-Jun;Sung, Nak-Hoon;Kim, Jung-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.25-28
    • /
    • 2008
  • 본 논문에서는 GB-SAR의 간섭기법을 이용하여 물체의 변위 측정에 대한 정밀도를 조사하였으며, 또한 대기보정을 거친 후 정밀도의 변화에 대해서 확인하였다. GB-SAR 시스템에서 안테나는 중심주파수 5.3 GHz, 밴드 폭 600 MHz인 C밴드 안테나를 사용하였고, 신호의 증폭을 위해 마이크로파 앰프를, 다편파 측정 및 분석을 위하여 스위치를 장착하였다. 레일의 총 길이는 5 m, 이동간격은 5 cm, 최대 관측 거리는 약 200 m이다. 변위 측정에 사용된 이동산란체는 trihedral corner reflector로서, 시스템 전방 약 160 m에 위치하며 시스템 방향으로 1 mm에서 40 mm 전진시켰다. 이동산란체의 실제 변위와 GB-SAR 시스템의 위상변화로 관측된 변위의 상관계수는 편파에 따라 0.9995에서 0.9996으로 나타났다. 마이크로파의 전파과정에서 거리와 습도에 따른 지연 효과를 고려하기 위하여 대기보정식을 구하였으며, 이를 이동산란체의 위상에 적용한 결과 상관계수는 0.9997에서 0.9999의 값을 나타냈고 40 mm 이동시 오차가 1 mm 이내를 나타냄으로서 대기보정을 통한 결과가 더 높은 정밀도를 나타냄을 확인하였다.

  • PDF