• Title/Summary/Keyword: 관측부이

Search Result 113, Processing Time 0.029 seconds

Investigation of Characteristics of Rip Current at Haeundae Beach based on Observation Analysis and Numerical Experiments (관측자료 분석과 수치모의에 의한 해운대 이안류 발생 특성 연구)

  • Yoon, Sung Bum;Kwon, Seok Jae;Bae, Jae Soek;Choi, Junwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4B
    • /
    • pp.243-251
    • /
    • 2012
  • To investigate the characteristics of rip current occurring at Haeundae beach, observations obtained from a buoy and a CCTV were analyzed and numerical experiments were conducted. During observed rip-current events, the CCTV images showed that a couple of wave-trains, which are close to regular waves with slightly different directions, propagated to the beach, and wavelet analyses of data from the buoy showed very narrow-banded spectra with a peak frequency. From the evidences, it was inferred that a known mechanism of generating rip current due to the nodal line area of honeycomb-patterned wave crest was one of the significant factors of rip current occurrences of Haeundae beach. The mechanism has been explained by the following: When two wave-trains with slightly different directions propagate to a beach, wave crests of the incident wave-trains form honeycomb pattern due to nonlinear interaction. The nodal lines of honeycomb pattern are developed in the cross-shore direction. And longshore currents flow toward the nodal line area which has very low wave energy. Consequently their mass flux is expelled through the area toward the sea direction. To confirm the generation, numerical experiments were performed using a nonlinear Boussinesq equation model. In the cases with two incident wave-trains with slightly different directions and with a monochromatic wave propagating over a submerged shoal, it was seen that the honeycomb pattern of wave crests was well developed, and thus rip currents were evolved along the nodal lines.

A Comparison of Typhoon Wind Models with Observed Winds (해상풍 관측자료에 근거한 태풍 해상풍 모형간의 상호비교)

  • 강시환;전기천;박광순;방경훈
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.100-107
    • /
    • 2002
  • The sea-surface winds during the passage of 64 typhoons for 1979-1999 were simulated using two different typhoon wind models, ie, typhoon parametric model(TPM) and primitive vortex model(PVM). The model hindcast winds were compared with the winds observed at JMA ocean buoys(22001 and 21002) and Kyushu ocean observation tower. The analysis of ms and relative errors between hindcast and observed winds was made to find the accuracy and sensitivity of the typhoon wind prediction models. Both hindcast winds of TPM and PVM underestimate the observed typhoon winds, but PVM winds are more closer to the observations with less rms and relative errors. Relative errors of two model winds were small within 200km from typhoon center, but TPM's relative errors increase up to 70% as the radial distance from typhoon center increases beyond > 200km although PVM's relative errors remain in 20% with less sensitive to the distance from typhoon centers.

Response of Water Temperature in Korean Waters Caused by the Passage of Typhoons (태풍 이동 경로에 따른 한반도 연근해 수온의 반응)

  • Kim, Sang-Woo;Lim, Jin-Wook;Lee, Yoon;Yamada, Keiko
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.508-520
    • /
    • 2016
  • In this study, variations in water temperature after the passage of typhoons in Korean waters from 2009-2015 were analyzed. Sea surface temperature (SST) images derived from satellite remote sensing data were used, and water temperature information came from real-time mooring buoys at Yangyang, Gangneung, Samcheok and Yeoungdeok, while wind data was supplied by the Korea Meteorological Administration. Differences in SST observed before and after the passage of a typhoon using the SST images were found to be affected by wind direction as well as hot and cool seasonal tendencies. Coastal water temperatures of the eastern part of the Korean peninsula, located to the right of a typhoon, as in the case of typhoons Muifa, Chanhom, Nakri and Tembin, were lowered by a coastal upwelling system from southerly winds across the water's surface at depths of 15m and 25m. In particular, typhoons Chanhom and Tembin decreased water temperatures by about $8-11^{\circ}C$ and $16^{\circ}C$, respectively. However, temperatures to the left of the typhoons were increased by a downwelling of offshore seawater with a high temperature through the mid and lower seawater layers. After the passage of the typhoons, further mixing of seawater at a higher or lower temperature due to southerly or northerly winds, according to the context, lasted for 1-2 or 4 days, respectively.

Improvement of KOMPSAT-5 Sea Surface Wind with Correction Equation Retrieval and Application of Backscattering Coefficient (KOMPSAT-5 후방산란계수의 보정식 산출 및 적용을 통한 해상풍 산출 결과 개선)

  • Jang, Jae-Cheol;Park, Kyung-Ae;Yang, Dochul;Lee, Sun-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1373-1389
    • /
    • 2019
  • KOMPSAT-5 is the first satellite in Korea equipped with X-band Synthetic Aperture Radar (SAR) instrument and has been operated since August 2013. KOMPSAT-5 is used to monitor the global environment according to its observation purpose and the availability of KOMPSAT-5 is also highlighted as the need of high resolution wind data for investigating the coastal region. However, the previous study for the validation of wind derived from KOMPSAT-5 showed that the accuracy is lower than that of other SAR satellites. Therefore, in this study, we developed the correction equation of normalized radar cross section (NRCS or backscattering coefficient) for improvement of wind from the KOMPSAT-5 and validated the effect of the equation using the in-situ measurement of ocean buoys. Theoretical estimated NRCS and observed NRCS from KOMPSAT-5 showed linear relationship with incidence angle. Before applying the correction equation, the accuracy of the estimated wind speed showed the relatively high root-mean-square errors (RMSE) of 2.89 m s-1 and bias of -0.55 m s-1. Such high errors were significantly reduced to the RMSE of 1.60 m s-1 and bias of -0.38 m s-1 after applying the correction equation. The improvement effect of the correction equation showed dependency relying on the range of incidence angle.

A Study on Standard Ocean Lighted Buoy Type System for Real-time Ocean Meteorological Observation (실시간 해양관측을 위한 표준형 등부표용 시스템 연구)

  • Park, Sanghyun;Park, Yongpal;Bae, Dongjin;Kim, Jinsul;Park, Jongsu
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1739-1749
    • /
    • 2018
  • We propose a marine observation system using existing light buoys to observe various marine information of marine locations. Our proposed ocean observation system is composed of the existing standard light buoy type and can be easily connected to the light buoy. The proposed marine observation system measures the mean wave height, maximum wave height, mean wave height and water temperature measured in the ocean. Besides, it can measure the air pressure, temperature, wind speed and wind speed in real time. In order to measure important peaks in marine observations, 2200 peak data are collected for 10 minutes, and the collected data are subjected to spectral analysis to extract significant wave and wave period data. The developed system removes the noise by using the filter because the marine observation system attaches to the light buoy. We compare and analyze the measurement data of the existing proven floating marine observation system and the standard equivalent system developed. Also, it is proved that the data of the standard type backbone ocean observation system developed through the comparative experiment is similar to that of the existing ocean observation system.

Status of Ocean Observation using Wave Glider (무인해상자율로봇(Wave Glider)을 이용한 해양관측 현황)

  • Son, Young Baek;Moh, Taejun;Jung, Seom-Kyu;Hwnag, Jae Dong;Oh, Hyunju;Kim, Sang-Hyun;Ryu, Joo-Hyung;Cho, Jin Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.419-429
    • /
    • 2018
  • An unmanned autonomous maritime surface system can move the vehicle to the areas for observing the ocean accidents, disasters, and severe weather conditions. Detection and monitoring technologies have been developed by the converging of the regional and local surveillance system. Wave Glider, one of the autonomous maritime surface systems, is ocean-wave propelled autonomous surface vehicle and controlled using Iridium satellite communication. In this study, we carried out two-time Wave Glider observations for 2016 and 2017 summer in the East China Sea that the area was influenced by low-salinity water. We observed the sea surface warming effect due to the low-salinity water using the regional (satellite) and local (Wave Glider) surveillance system. We also monitored the effect of the typhoon and understood the change of the ocean-atmosphere environments in real-time. New unmanned surface system with autonomous system and high endurance structure can measure comprehensively and usefully a long observation in complicated ocean environments because of connecting with other surveillance systems.

Automatic Detection and Analysis of Rip Currents at Haeundae Beach using X-band Marine Radar (항해용 X-band 레이다를 이용한 해운대해수욕장 이안류 자동탐지 및 특성 분석)

  • Oh, Chanyeong;Ahn, Kyungmo;Cheon, Se-Hyeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.485-492
    • /
    • 2019
  • The observation system has been developed to investigate the rip currents at Haeundae beach using X-band marine radar. X-band radar system can observe shape, size, and velocity of rip currents, which is difficult to obtain through field observation by conventional device. Algorithms which automatically detect locations, shapes, and magnitudes of rip currents were developed using time averaged X-band radar sea clutter images. X-band sea clutter images are transformed through 3D FFT into 2D wave number spectrum and frequency spectrum. Rip current velocities were estimated using differences in wave-number spectra and wave frequency spectra due to Doppler shift. The algorithm was verified by drift experiments. At Haeundae beach, the radar system exactly located the rip currents and found to be sustained for 1-2 days at fixed locations.

Classification and Analysis of Korea Coastal Flooding Using Machine Learning Algorithm (기계학습 알고리즘에 기반한 국내 해수범람 유형 분류 및 분석)

  • CHO, KEON HEE;EOM, DAE YONG;PARK, JEONG SIK;LEE, BANG HEE;CHOI, WON JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • In this study, Information for the case of seawater flooding and observation data over a period of 10 years (2009~2018) was collected. Using machine learning algorithms, the characteristics of the types of seawater flooding and observations by type were classified. Information for the case of seawater flooding was collected from the reports of the Korea Hydrographic and Oceanographic Agency (KHOA) and the Korea Land and Geospatial Informatics Corporation. Observation data for ocean and meteorological were collected from the KHOA and the Korea Meteorological Agency (KMA). The classification of seawater flooding incidence types is largely categorized into four types, and into 5 development types through combination of 4 types. These types were able to distinguish the types of seawater flooding according to the marine weather environment. The main characteristics of each was classified into the following groups: tidal movement, low pressure system, strong wind, and typhoon. Besides, in consideration of the geographical characteristics of the ocean, the thresholds of ocean factors for seawater flooding by region and type were derived.

Development of Realtime Ubiquitous River Monitoring System (실시간 유비쿼터스 하천정보 모니터링 시스템의 개발)

  • Jang, Bok-Jin;Lee, Jong-Kook;Yeo, Woon-Kwang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1305-1312
    • /
    • 2006
  • This study is about the development of measurement system using ubiquitous wireless communication for river flow monitoring. The system can acquire water depth, quality (temperature, pH, conductivity, turbidity etc.) while a GPS module for getting the location data of measurement points. Also this system is able to acquire the field data via RF connection and can be controlled same time. The acquired data is transmitted to a gateway system from the remote buoy using Zigbee wireless connection. And the gateway system is able to monitor the data through GIS monitoring tool. Finally the data are transmitted to a server computer using CDMA wireless connection by gateway system. The D/B of server computer are constructed automatically and monitored the project web site. The resulting system can be used for scour monitoring, environment monitoring and the other monitoring purposes such as a river flow monitoring system.

  • PDF

Physical characteristics of internal waves and its influence on acoustic propagation in the East Sea (동해 내부파의 물리적 특성과 음파전달에의 영향)

  • Han Bong Wan;Nam Sung Hyun;Yun Jae Yul;Kim Kuh;Kim Seongil;Kim Young-Gyu
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.421-424
    • /
    • 2004
  • 한국 동해시 연안역에서 2001년 6월, 2003년 5월 및 2004년 5월 해상실험 및 실시간 모니터링 부이 시스템을 통해 수집된 해양관측(수온, 유속)자료와 SAR (Synthetic Aperture Radar)위성영상을 분석한 내부파의 물리적 특성을 정리하였다. 이를 토대로 음파전달 모델(RAM)을 통해 내부파에 의한 음파전달 영향을 파악하고, 음도파관 불변 이른(Waveguide invariant theory)을 적용하여 내부파에 의한 해양 변동성을 음향학적으로 정량화 하였다.

  • PDF