• Title/Summary/Keyword: 관절모멘트

Search Result 89, Processing Time 0.018 seconds

Biomechanical Effect on Knee Adduction Moment by Lateral Wedge Insole in Transfemoral Amputee (외측웨지인솔이 대퇴절단자의 무릎내전모멘트에 미치는 영향)

  • Chang, Yun-Hee;Lee, Wan-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.239-244
    • /
    • 2012
  • The prevalence of knee osteoarthritis was higher people with lower limb amputation. This was identified that transfemoral amputees have a greater external knee adduction moment than ablebodied subjects by biomechanical studies. Therefore, they need rehabilitative intervention for prevention and reduction of knee osteoarthritis. The purpose of this study was to determine the effect of lateral wedge insole used in the treatment of knee osteoarthritis. This study was participated in fourteen unilateral transfemoral amputees and we were analyzed the difference gait variables between without lateral wedge insole and with $5^{\circ}$ and $10^{\circ}$ lateral wedge insole during gait. Our results showed that step length ratio was more symmetrical and, hip adduction and ankle inversion angle were more close to normal value, and knee adduction moment was decreased as the wedge angle increases. We proposed that these data would be utilized conservative treatment of knee osteoarthritis in lower limb amputees.

Biomechanical Research on Forward Gait with Backward Mechanism (후진 보법을 이용한 전방향 보행의 생체역학적 연구)

  • Hah, Chong-Ku;Jeong, Wang-Soo;Hong, Su-Yeon;Jang, Young-Kwan;Ki, Jae-Sug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7285-7292
    • /
    • 2015
  • The purpose of this study was to investigate possibility of a forward gait with backward mechanism(dance gait) as rehabilitation and/or walking exercise by means of biomechanical variables. Thirteen professional women dancers(age, $21.1{\pm}1.3yrs$; height, $159.3{\pm}7.2cm$; body mass, $45.1{\pm}8.4kg$)participated in this study. We found that speed, stride length and double limb support time of a dance gait were more greater than backward gait, but stride width of dance gait less than a backward gait. Maximum RoMs, moments and powers of the lower limb joints on a dance gait were more frequent than a backward dance. These results were judged to be sufficient by the possibility of dance gait as rehabilitation and walking exercise.

Effects of Cooling on Repeated Muscle Contractions and Tendon Structures in Human (냉각이 반복된 근수축과 사람의 건 구조에 미치는 영향)

  • Chae, Su-Dong;Jung, Myeong-Soo;Horii, Akira
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.6
    • /
    • pp.1-11
    • /
    • 2006
  • Purpose: This study compared the effects of non-cold and cold conditions on the viscoelastic properties of tendon structures in vivo. Methods: Seven male subjects perfomed plantar flesion exercise with maximal isokinetic voluntary contraction, which consisted of muscle contraction for 6 see and relaxation for 60 secs, 10 times for 1 set, Totally 10 sets were repeated. Before and after each task, the elongation of the tendon and aponeurosis of the medial gastrocnemius muscle (MG) was directly measured by ultrasonography. (The relationship between the estimated tendon force and tendon elongation.) Tendon cross-sectional area and ankle joint moment arm were obtained from magnetic resonance imaging (MRI). The tendon force was calculated from the joint moments and the tendon moment arm and stress was obtained by dividing force by cross-sectional areas (CSA). The strain was measured from the displacements normalized to tendon length. Results: After cooling, the tendon force was larger in cold than non-cold. The value of the tendon stiffness of MVC were significantly higher under the cold condition than under the non-cold condition. The maximal strain and stress of $7.4{\pm}0.7%$ and $36.4{\pm}1.8$ MPa in non-cold and $7.8{\pm}8.5%,\;31.8{\pm}1.1$ MPa in cold (P<0.05). Conclusion: This study shows for the first time that the muscle endurance in cooling increases the stiffness and Young's modulus of human tendons. The improvement in muscle endurance with cooling was directly related to muscle and tendon.

  • PDF

Comparison of Gait Patterns on Pregnant's Kinematic Factors and Lower-Limb Joint Moments During Pregnant Period (임신 기간에 따른 임산부 보행의 운동학적 요인과 하지 관절모멘트 패턴 비료)

  • Hah, Chong-Ku;Jang, Young-Kwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.78-84
    • /
    • 2009
  • The purpose of this study was to compare gait patterns during pregnancy. Because of the changes in hormone levels and anatomical changes such as body mass, body-mass distribution, joint laxity, and musculotendinous strength that result from pregnancy, it was possible that there would be certain gait deviations associated with these changes. Three-dimensional gait analyses were performed from a self-selected pace, and six subjects(height : $163{\pm}5.3cm$, mass : $61.3{\pm}3.80kg$, $65.3{\pm}5.14kg$, $70.2{\pm}4.98kg$) participated in the three times(the early, middle and last years). 7 cameras(Proreflex MCU-240, Qualisys) and 2 force plates (Type 9286AA, Kistler) were used to acquire raw data. The parameters were calculated and analyzed with Visual-3D and Joint moments computed using inverse dynamics. In conclusion, pregnant women's gait patterns were changed during pregnancy period because pregnancy makes them physical changes. The main changes were joint moments and kinematic factors during pregnancy period. The pregnancy transformed normal gait pattern Into toe out position. Therefore, exercise programs to improve muscle activity were necessary where joint moments were small. The development of simulator should be studied for pregnant women's tailored shoes and accessories in future.

Effects of Knee Joint Muscle Fatigue and Overweight on the Angular Displacement and Moment of the Lower Limb Joints during Landing (무릎 관절 근육 피로와 과체중이 착지 시 하지 관절의 각변위와 모멘트에 미치는 영향)

  • Kim, Tae-Hyeon;Youm, Chang-Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.63-76
    • /
    • 2013
  • The purpose of this study was to investigate the effects of knee joint muscle fatigue and overweight on the angular displacement and moments of the lower limb joints during landing. Written informed consent forms, which were approved by the human subject research and review committee at Dong-A University, were provided to all subjects. The subjects who participated in this study were divided into 2 groups: a normal weight group and an overweight group, consisting of 15 young women each. The knee joint muscle fatigue during landing was found to increase the dynamic stability by minimizing the movements of the coronal and horizontal planes and maintaining a more neutral position to protect the knee. The effect of body weight during landing was better in the normal weight group than in the overweight group, with the lower limbs performing their shock-absorbing function in an efficient manner through increased sagittal movement. Therefore, accumulated fatigue of knee joint muscles or overweight may be highly correlated with the increase in the incidence of injury during landing after jumping, descending stairs, and downhill walking.

Biomechanical Comparison of Good and Bad Performances within Individual in Maximum Vertical Jump (최대 수직 점프시 개인내 우수 수행과 비우수 수행의 역학적 비교)

  • Kim, Yong-Woon;Kim, Yong-Jae
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.489-497
    • /
    • 2009
  • The purpose of this study was to find differences of jumping performances within individual and to identify the influencing factors in these differences. 20 male subjects performed 6 maximal vertical jumps. The best(GP) & worst(BP) performance of each subject based on their jump height were compared in further analysis. There was a significant difference of approx. 10% in the jump height between GP and BP, which resulted from height of COM and vertical velocity at the instant of take-off. We could observe a significantly higher ankle moment in the GB more than the BP but no significant differences for the knee and hip joint. Also the maximum power of ankle joints in the GP were significantly higher than that in the BP. According to the results, the mechanical output of knee and hip joint are not as influential as that of ankle joint for difference of performance within individual. In conclusion, the results showed that mechanical output of the ankle joint could be more influential factors on the performances within individual although the knee and hip joint play an important role in the vertical jump. We therefore propose that more emphasis should be placed on the potentiation of the ankle joint for the training of the maximum vertical jump.

Lower Limbs Muscle Comparative Research for Verification Effect of Rehabilitation Training Program of Total Hip Arthroplasty (재활운동 프로그램에 참가한 엉덩인공관절 수술자의 하지근력 변화에 대한 비교연구)

  • Jin, Young-Wan
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.543-548
    • /
    • 2010
  • The purpose of this study was to examine the differences in kinetics between 6 months of rehabilitation training and 12 months of rehabilitation training after total hip arthroplasty. 10 unilateral THA participants performed kinetic tests. Three dimensional kinematics and hip flexors and abductors electromyography (EMG) were collected during each trial. T-test was used for statistical analysis (p<0.05). There was no significant difference in EMG data between the two groups, but the mean comparison EMG data was higher in the 12 months rehabilitation training group than the 6 months rehabilitation training group. The moment value was found with motion-dependent interaction analyzing method which was used by Feltner and Dapena. There was no significant difference between moment values of the two groups. There was no significant difference between ground reaction forces of the two groups; however, there were some differences shown in Fz (vertical reaction force) between the two groups ($892{\pm}104\;N$, $820{\pm}87\;N$). The first peak impact force was about 9% lower in the 12 months group compared to the 6 months group. The second peak active force was nearly equal between the two groups. More research is necessary to determine exactly what constitutes optimal rehabilitation training biomechanics for patients with total hip arthroplasty.

The Changes of Joint Moments According to Weight Loading Gait on Normal Adults (정상 성인의 무게 부하 보행이 관절 모멘트의 변화에 미치는 영향)

  • Chung, Hyung-Kuk
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.2
    • /
    • pp.53-61
    • /
    • 2003
  • The purposes of this study were to describe and compare pint moments according to 6 types of gait methods during free speed. 15 volunteers(7 male, 8 female: mean age = 23.33 yrs.) participated and performed 6 types of gait methods. From the 3 types of pint moments of lower extremities(hip, knee, ankle and foot), the following results were made: 1. In left hip pint, the flexion-extension moment was not significantly different, but the adduction-abduction moment and rotation moment were showed different curves during stance phase. 2. In left knee pint, the flexion-extension moment was not significantly different, but the varus-valgus moment and rotation moment were showed different curves during stance phase. 3. In left ankle and foot the dorsiflexion-plantarflexion moment was not significantly different but the varus-valgus moment and rotation moment were showed different curves during stance phase. In conclusion, because weight loading gait with 10-20% of body weight were normal gait patterns, It was inferred that all weight loading gaits did not indicate noxious reactions of human body.

  • PDF

Estimation of Muscle-tendon Model Parameters Based on a Numeric Optimization (최적화기법에 의한 근육-건 모델 파라미터들의 추정)

  • Nam, Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.122-130
    • /
    • 2009
  • The analysis of human movement requires the knowledge of the Hill type muscle parameters, the muscle-tendon and moment arm length change as a function of joint angles. However, values of a subject's muscle parameters are very difficult to identify. It turns out from a sensitivity analysis that the tendon slack length and maximum muscle force are the two critical parameters among the Hill-type muscle model. Therefore, it could be claimed that the variation of the tendon slack length and maximum muscle force from the Delp's reference data will change the muscle characteristics of a subject remarkably. A numeric optimization method to search these tendon parameters specific to a subject is proposed, and the accuracy of the developed algorithm is evaluated through a numerical simulation.

Development of a Model for the Estimation of Knee Joint Moment at MVC (MVC 상태에서의 무릎관절 모멘트 추정을 위한 모델 개발)

  • Nam, Yoon-Su;Lee, Woo-Eun
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.222-230
    • /
    • 2008
  • This paper introduces a method of estimating the knee joint moment developed during MVC. By combining the Hill-type muscle model and analytic results on moment arm and musculotendon length change as a function of hip and knee joint angle, the knee joint moment at a specific knee joint angle during MVC is determined. Many differences between the estimated results and the experimental data are noted. It is believed that these differences originate from inaccurate information on the muscle-tendon parameters. The establishment of exact values for the subject's muscle parameters is almost impossible task. However, sensitivity analysis shows that the tendon slack length is the most critical parameter when applying the Hill-type muscle model. The effect of a change of this parameter on the muscle length force relationship is analyzed in detail.