• Title/Summary/Keyword: 관전류

Search Result 125, Processing Time 0.028 seconds

Feasibility Study of Modifying Diagnostic Radiation Dose using Magnetic Field (자기장을 이용한 진단방사선 선량 변화 가능성 연구)

  • Jeong-Min Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.5
    • /
    • pp.509-513
    • /
    • 2024
  • This study investigated the feasibility of applying the changes in electron dose distribution, observed in high-energy therapeutic radiation using magnetic fields, to low-energy diagnostic radiation. The diagnostic X-ray exposure conditions were set with a tube current of 200 mA, source-to-detector distance (SDD) of 100 cm, exposure time of 1.0 sec, and an irradiation field size of 20 × 20 cm2. The tube voltage was varied from 70 to 100 kVp in 10 kVp increments. A 0.5 T permanent Nd magnet was used to create a magnetic field below the collimator. Measurements were repeated 20 times for each tube voltage, both with and without the magnetic field, and were compared using an independent-samples t-test. While slight differences of dose were observed at tube voltages of 70, 80, and 90 kVp, no statistically significant differences were found (p > .05). However, a significant difference was observed at 100 kVp (p = .048). Based on these findings, it is suggested that applying higher energy, longer exposure times, stronger magnetic fields, and high-performance detectors could potentially modify the electron dose distribution in diagnostic radiation. This could contribute to dose reduction for patients and improvement in the quality of medical imaging.

Reducing of Craniofacial Radiation Dose Using Automatic Exposure Control Technique in the 64 Multi-Detector Computed Tomography (64 다중 검출기 전산화단층촬영에서 관전류 자동노출조절 기법을 이용한 두개부 방사선량 감소 정도 평가)

  • Seoung, Youl-Hun;Kim, Yong-Ok;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2010
  • The purpose of this study was to evaluate the usefulness of reducing of craniofacial radiation dose using automatic exposure control (AEC) technique in the 64 multi-detector computed tomography (MDCT). We used SOMATOM Definition 64 multi-detector CT, and head of whole body phantom (KUPBU-50, Kyoto Kagaku CO. Ltd). The protocol were helical scan method with 120 kVp, 1 sec of rotation time, 5 mm of slice thickness and increment, 250 mm of FOV, $512{\times}512$ of matrix size, $64{\times}0.625\;mm$ of collimation, and 1 of pitch. The evaluation of dose reducing effect was compared the fixed tube current of 350 with AEC technique. The image quality was measured the noise using standard deviation of CT number. The range of craniofacial bone was to mentum end from calvaria apex, which devided three regions: calvaria~superciliary ridge (1 segment), superciliary ridge~acanthion (2 segment), and acanthion~mentum (3 segment). In the fixed tube current technique, CTDIvol was 57.7 mGy, DLP was $640.2\;mGy{\cdot}cm$ in the all regions. The AEC technique was showed that 1 segment were 30.7 mGy of CTDIvol, 340.7 $mGy{\cdot}cm$ of DLP, 2 segment were 46.5 mGy of CTDIvol, $515.0\;mGy{\cdot}cm$ of DLP, and 3 segment were 30.3 mGy of CTDIvol, $337.0\;mGy{\cdot}cm$ of DLP. The standard deviation of CT number was 2.622 with the fixed tube current technique and 3.023 with the AEC technique in the 1 segment, was 3.118 with the fixed tube current technique and 3.379 with the AEC technique in the 2 segment, was 2.670 with the fixed tube current technique and 3.186 with the AEC technique in the 3 segment. The craniofacial radiation dose using AEC Technique in the 64 MDCT was evaluated the usefulness of reducing for the eye, the parotid and thyroid with high radiation sensitivity particularly.

Medical Radiation Exposure in Children CT and Dose Reduction (소아 CT 촬영시 방사선 피폭과 저감화 방법)

  • Lee, Jeong-Keun;Jang, Seong-Joo;Jang, Young-Ill
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.1
    • /
    • pp.356-363
    • /
    • 2014
  • Recently pediatric CT has been performed by reduced dose according to tube current modulation이라고, this fact has a possibility more reduce a dose because of strong affect depend on tube current modulation. Almost all MDCT snow show and allow storage of the volume CT dose index (CTDIvol), dose length product (DLP), and effective dose estimations on dose reports, which are essential to assess patient radiation exposure and risks. To decrease these radiation exposure risks, the principles of justification and optimization should be followed. justification means that the examination must be medically indicated and useful. Results is using tube current modulation이라고 tend to the lower kV, the lower effective dose. In case of use a low dose CT protocol, we found a relatively lower effective dose than using tube current modulation. Average effective dose of our studies(brain, chest, abdomen-pelvis) less than 47%, 13.8%, 25.7% of germany reference dose, and 55.7%, 10.2%, 43.6% of UK(United Kingdom) reference dose respectively. when performed examination for reduced dose, we must use tube current modulation and low dose CT protocol including body-weight based tube current adaption.

Evaluation of Image Quality in Low Tube-Voltage Chest CT Scan (흉부 CT 검사 시 저 관전압 영상의 화질평가에 관한 연구)

  • Kim, Hyun-Ju;Cho, Jae-Hwan;Park, Cheol-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.4
    • /
    • pp.135-141
    • /
    • 2010
  • Purpose : The patients who visited this department for pulmonary disease and need CT scans for Follow-up to observe change of CT value, evaluation of image quality and decrease of radiation dose as change of kVp. Subjects and Methods : Subjects were the patients of 20 persons visited this department for pulmonary disease and Somatom Sensation 16(Semens, Enlarge, Germany) was used. Measurement of CT value as change of kVp was done by setting up ROI diameter of 1cm at the height of thyroid, aortic arch, right pulmonary artery in arterial phase image using 100 kVp, measuring 3 times, and recorded the average. CT value of phantom was measured by scanning phantoms which means contrast media diluted by normal saline by various ratio with tube voltage of 80 kVp, 100 kVp, 120 kVp, 140 kVp and recorded the average of 3 CT values of center of phantom image. In analysing radiation dose, CTDIVOL values of the latest arterial phase image of 120 kVp and as this research set that of 100 kVp were analyzed comparatively. 2 observers graded quality of chest images by 5 degrees (Unacceptable, Suboptimal, Adequate, Good, Excellent). Results : CT value of chest image increased at 100 kVp by 14.06%~27.26% in each ROI than 120 kVp. CT value of phantom increased as tube voltage lowered at various concentration of contrast media. CTDIVOL decreased at 100 kVp(5.00 mGy) by 36% than 120 kVp(7.80 mGy) in radiation dose analysis. here were 0 Unacceptable, 1 Suboptimal, 3 Adequate, 10 Good, 6 Excellent in totally 20 persons. Conclusion : Chest CT scanning with low kilo-voltage for patients who need CT scan repeatedly can bring images valuable for diagnose, and decrease radiation dose against patients.

A Study on Characteristic of Glass Dosimeter According to Graded Change of Tube Current (유리선량계의 단계별 관전류량 변화에 따른 특성연구)

  • Son, Jin-Hyun;Kim, Seong-Ho;Mun, Hyun-Jun;Kim, Lyun-Kyun;Son, In-Hwa;Kim, Young-Jun;Min, Jung-Whan;Kim, Ki-Won
    • Journal of radiological science and technology
    • /
    • v.37 no.2
    • /
    • pp.135-141
    • /
    • 2014
  • This study was evaluated the linearity and reproducibility according to dose, and reproducibility according to delay time by changing tube current amount (5 mAs, 10 mAs, 16 mAs, 20 mAs, 25 mAs, 32 mAs respectively, which are low energy radiations) using Glass Dosimeter (GD) and piranha semiconductor dosimeter which are used for measuring exposure dose. Measurements of radiation dose were performed using external detector of piranha 657 which is multi-function QA device (RTI Electronic, Sweden). Conditions of measurement were 80 kVp, SSD 100 cm and exposure region is $10cm{\times}10cm$. Glass dosimeter was exposed to radiation. Twenty-four glass dosimeters were divided into six groups (5 mAs, 10 mAs, 16 mAs, 20 mAs, 25 mAs, 32 mAs respectively), then measured. This study was resulted by measuring the linearity and reproducibility according to change of tube current in low energy field. In dose characteristic of GD, this study could be useful as previous study with regard to dose characteristic according to change of tube voltage in low energy field.

The fabrication and evaluation of CdS sensor for diagnostic x-ray detector application (진단 X선 검출기 적용을 위한 CdS 센서 제작 및 성능 평가)

  • Park, Ji-Koon;Lee, Mi-Hyun;Choi, Young-Zoon;Jung, Bong-Zae;Choi, Il-Hong;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • Recently, various semiconductor compounds as radiation detection material have been researched for a diagnostic x-ray detector application. In this paper, we have fabricated the CdS detecton sensor that has good photosensitivity and high x-ray absorption efficiency among other semiconductor compounds, and evaluated the application feasibility by investigating the detection properties about energy range of diagnostic x-ray generator. We have fabricated the line voltage selector(LCV) for a signal acquisition and quantities of CdS sensor, and designed the voltage detection circuit and rectifying circuit. Also, we have used a relative relation algorithm according to x-ray exposure condition, and fabricated the interface board with DAC controller. Performance evaluation was investigated by data processing using ANOVA program from voltage profile characteristics according to resistive change obtained by a tube voltage, tube current, and exposure time that is a exposure condition of x-ray generator. From experimental results, an error rates were reduced according to increasing of a tube voltage and tube current, and a good properties of 6%(at 90 kVp) and 0.4%(at 320 mA) ere showed. and coefficient of determination was 0.98 with relative relation of 1:1. The error rate according to x-ray exposure time showed exponential reduction because of delayed response velocity of CdS material, and the error rate has 2.3% at 320 msec. Finally, the error rate according to x-ray dose is below 10%, and a high relative relation was showed with coefficient of determination of 0.9898.

A Design of Electronic Ballast for 70W Metal Halide Lamps (70W 메탈핼라이드용 전자식 안정기의 설계)

  • 최명호;임성훈;한병성
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.3
    • /
    • pp.7-13
    • /
    • 1999
  • In this paper, a low wattage high frequency operation electronic ballast for double ended 70W metal halide lamp has been investigated As an input source of the proposed ballast, 220V, 60 Hz ac voltage is used and is converted high frequency ac voltage by power processing system. To prevent a physical destruction of the lamp from acoustic resonance phenorrenon, the proposed ballast sLWlies alternating voltage of 22kHz frequency to a metal halide lamp. It shows sorre efficacious result that reduce the start up tiIre of lamp and electric power consumption. By testing the proposed ballast, lamp voltage and lamp current are 155Vpeak, O.64A, respectively. Lamp luminous flux is 5300lm with 82W input power and ballast efficiency is 64.63 Im/w. The average starting tiIre and restriking tiIre of lamp are 3.9 and 4.5 minutes, respectively.tively.

  • PDF

A 16kw Rotating Anode type Monoblock X-ray Generator (16kW 회전 Aonde형 모노블럭 X-선 발생장치)

  • Oh, Jun-Yong;Kim, Yuen-Chung;Kim, Hack-Seong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.97-103
    • /
    • 2006
  • This paper designs mono block type with rotating high power radiography x-ray generator and studies 16kW X-ray generator possible to adapt hospital mobile radiography and industrial X-ray equipment and design. This equipment uses rotating anode type x-ray tube at high voltage generator to generate x-ray and adds rotor operating circuit to operate rotor of x-ray tube. The size of high voltage transformer and high voltage generator is minimized by high voltage high frequency inverter has 100kHz switching frequency. Also this paper shows result of x-ray tube voltage and tube current correspond to variable load.

Development of High Voltage Generator for Diagnostic X-ray Equipment (진단용 X선 기기의 고전압 발생장치 개발)

  • Kim, Young-Pyo;Kim, Tae-Gon;Cheon, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.764-765
    • /
    • 2010
  • The medical treatment X-ray machineries used in diagnosis of the human body is possible to diagnosis inside of the human body with the method of noninvasive so that it has shared a very important role in diagnosis from the medical institution. High voltage occurrence system which is most important in occurrence of X-ray has mainly been used the existing type of high voltage transformer, however it has a low efficiency of X-ray occurrence since it is a big and heavy, and a high ripple ratio of the direct current high voltage come to the X-ray tube. In order to solve this problem, the research has been advanced about the high voltage power supply system, and the inverter type of the high voltage occurrence system which occurs a high voltage by increasing the power frequency from about ten times to about hundred times with the inverter has currently used mainly. Also, the operation of tube voltage and tube current was controlled by using PWM method and the operation results were identified using an oscilloscope.

  • PDF

Ghosting Artifacts in Digital Radiography (디지털 방사선영상에서 고스팅 아티팩트)

  • Jung, Wonhee;Chon, Kwonsu
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.7
    • /
    • pp.377-382
    • /
    • 2014
  • Because of using computer system in the field of medical radiology, many artifacts which can not be seen in film/screen system are being created, especially ghosting artifacts. This artifacts could be yielded by taking advantage of a flat panel Thin-Film Transistor array detector. Ghosting artifacts can be rarely seen in clinical practice when an image that has a high-contrast object within a region of high exposure is quickly followed by another image that puts the high-contrast ghosting image in an area of lower radiation exposure. In this experiment, the ghosting artifacts were minimized for approximately 3 minutes with the unaided eye and almost disappeared for 6 minutes quantitatively between exposures. Moreover, the artifacts were influenced by more tube voltage than current and those depended not upon the number of readout cycles, but upon time.