하지 정맥류 질환 환자를 대상으로 하지 정맥조영술 MDCT 검사에서 환자의 피폭선량을 최소화 하면서 최적의 진단영상을 묘출하기 위해 고정 관전류 기법과 Z-축 자동 관전류 변동 제어를 이용하여 CTDIvol(CT dose index volume), DLP(dose length product) 산출을 통한 영상의 노이즈를 측정하여 비교하였다. Monte Carlo simulation으로 200, 250, 300 mA에서 CTDIw, CTDIvol, DLP를 계산하여 고정 관전류 기법과 비교하였다. 고정 관전류 기법의 대상 환자는 50명(평균 나이, 46세; 연령 범위, 35-61세)으로 남성30명, 여성 20명 이었고, 평균 체중은 62.4 kg 이었다. Z-축 자동 관전류 변동 제어 대상 환자는 50명(평균 나이, 43세; 범위, 37-63세)으로 남성25명, 여성 25명 이었고 평균 체중은 60.1 kg 이었다. 고정 관전류 기법은 200, 250, 300 mA를 기준으로 하고, Z-축 자동 관전류 변동 제어는 노이즈 지수 10, 11, 12 HU에서 관전류 $70{\sim}450\;mA$ 범위 내에서 자동으로 선택하였다. 고정 관전류 기법과 Monte Carlo simulation 비교에서 200 mA에서의 CTDIvol은 차이가 없었으나, 250 mA, 300 mA 에서의 Monte Carlo simulation는 높았고, DLP는 모든 관전류에서 Monte Carlo simulation이 높게 측정 되었다. 노이즈는 고정 관전류에서 최소 $9.8{\pm}0.9\;HU$, 최대 $12.5{\pm}0.7\;HU$ 이었고, Z-축 자동 관전류 변동 제어에서는 최소 $11.3{\pm}0.8\;HU$, 최대 $12.9{\pm}0.7\;HU$이었다. Z-축 자동 관전류 변동 제어에서 노이즈 지수가 증가하면 CTDIvol과 DLP가 감소하였으나 노이즈는 증가하였다. 생식부위를 포함하는 하지 정맥조영술에서 Z-축 자동 관전류 변동 제어 방법이 고정 관전류 기법에 비해 선량을 감소하는 효과가 있었다.
치과 구내 촬영 시 사용하는 관전류 및 시간에 따라 환자가 받는 피폭선량은 달라진다. 영상의 질을 위해서는 많은 양의 관전류가 필요하지만, 환자에게 부여되는 방사선량은 그만큼 높아진다. 이에 본 연구에서는 시뮬레이션을 통한 치과 구내 촬영 시 사용하는 관전류에 따른 영상의 질 평가를 통해 영상의 질을 확보하면서 환자가 받는 피폭선량은 감소시킬 수 있는 최적의 관전류 양을 산출하였다. 치과 구내 촬영의 진단참고수준 가이드라인에 제시된 평균 관전류와 시간 및 관전압을 기본 촬영 조건으로 사용하고, 관전류만 변화시켰을 때 영상을 획득한 후 기본 영상과의 영상의 질 비교·분석을 통해 최적의 관전류 양을 산출하였다. 기본 조건은 63 kV, 6 mA, 0.29 s로 하고 관전류를 0.1, 0.5, 1, 2, 3, 4, 5 mA로 변경시켜 영상을 획득하였다. 획득한 영상은 ICY 프로그램을 사용하여 6 mA의 조건으로 촬영한 영상과 구조적 유사지수를 평가하였다. 그 결과 0.5 mA의 관전류 조건에서도 6 mA의 영상과 구조적 유사지수가 높은 것으로 평가되었다. 이러한 결과를 바탕으로 치과 구내 촬영 시 6 mA가 아닌 0.5 mA로 촬영한다면 환자에게 부여되는 피폭선량을 매우 감소시킬 수 있을 것으로 판단된다.
본 논문에서는 관전류 직접제어 방식을 채택한 3.2kW(80kV,40mA)급 최소형, 최경량 Portable X-선 장치를 제안한다 본 장치는 X-선 발생을 위한 고전압 발생 단에 모노탱크 블록 사용하였고, 고주파 고전압용 인버터에는 스위칭 전력소자로서 Mini block type의 MOS-FET를 채용, 80kHz로 스위칭 함으로서 고전압 변압기를 비롯한 고전압 발생부의 크기와 무게를 최소화하였다. X-ray Power의 출력이 높아짐에 따라, X-ray tube의 필라멘트 인버터의 출력용량 또한 증가되었다. 본 논문에서는 설정 관전류에 대한 정밀한 제어를 위하여 2단계 모드로 필라멘트 예열을 행하여 관전류 응답특성을 개선하였으며 제안한 휴대용 X-선 발생장치의 부하변동에 따른 X-선 관전압과 관전류의 개선된 특징을 실험파형을 통하여 입증하였다.
본 논문에서는 X-선 관전류를 직접 검출하여 제어하는 2.4kW(80kv,30mA)급 최소형, 최경량 휴대용 X-선 발생 장치를 제안한다. 본 장치는 X-선발생을 위한 고전압 발생단에 모노탱크 블록 사용하였고, 고주파 고전압용 인버터에는 스위칭 전력소자로서 MOS-FET를 채용, 70kHz로 스위칭 함으로서 고전압 변압기를 비롯한 고전압 발생부의 크기와 무게를 최소화하였다. 또한, 설정 관전류에 대한 정밀한 제어를 위하여 2단계 모드로 필라멘트 예열을 행하여 관전류 응답특성을 개선하였으며 제안한 휴대용 X-선 발생장치의 부하변동에 따른 X-선 관전압과 관전류의 개선된 특징을 실험파형을 통하여 입증하였다.
본 연구에서는 미국 Xoft 사에서 근접치료 장치(elecronic brachytherapy)를 목적으로 개발된 소형 X-선 튜브를 치과용 영상장비로 사용함에 있어서 고전압 발생장치의 제어용 장치를 개발하고 영상용 제어 방식으로 최적화하고자 한다. 연구에서 사용된 X-선 튜브와 고전압 발생 장치는 각각 Axxent S700과 XF060NZZ485를 사용하였고, AT90CAN128 MCU를 사용하여 제어보드를 제작하였다. 관전압을 50 kV로 고정한 후에 제어 방식에 따라서 필라멘트 전류 제어 방식과 관전류제어 방식으로 나누었다. 필라멘트 제어 방식은 다시 필라멘트 가열 시간에 따라서 5초와 10초의 두 가지로 나누어 실험하였다. 필라멘트 전류 제어 방식에서는 필라멘트 예열 시간이 10초 이상이 되지 않으면 설정된 관전류 값에 도달하기 어려웠고, 관전류가 발생하는 필라멘트 전류도 1,300~1,350 mA로 가변적이었으며, 관전류가 발생된 이후에도 설정된 목표 값에 도달하기 위해서는 약 5초 이상의 시간이 소요되었다. 하지만 관전류 제어 방식에서는 관전류가 설정된 목표 값에 시간 지연 없이 즉각적으로 도달하였으며 그 때의 필라멘트 전류 값은 1,500 mA였다. 본 연구에서는 소형의 X-선 튜브에 고전압을 안정적으로 공급하는 제어 장치를 개발하였고, 방사선 영상장비로 사용함에 있어서는 관전류 제어 방식이 적합함을 보였다.
본 연구는 폐 방사선 치료를 위한 컴퓨터 단층촬영의 관전압, 관전류 조건에 따라 딥 러닝과 아틀라스기반 자동분할 방법에 따른 생성된 볼륨과 Dice 유사도 계수와 95% 하우스도르프 거리를 분석하였다. 첫 번째 결과로 관전압 관전 류의 변화에 생성된 볼륨의 결과에서는 아틀라스기반인 smart segmentation 방법이 가장 적은 볼륨 변화를 보여주었으며, 딥 러닝을 사용한 Aview RT ACS와 OncoStudio에서는 100 mAs보다 낮은 관전류에서는 볼륨이 작아지는 걸 확인했다. 두 번째 결과인 Dice 유사도 계수에서는 Aview RT ACS가 OncoStuido 보다 2% 높은 결과를 보여주고 있으며, 95% 하우스도르프거리 결과에서도 Aview RT ACS가 OncoStudio 보다 평균 0.2~0.5% 높게 분석되었다. 하지만 관전류와 관전압에 따라 각각의 결과의 표준편차에서는 오히려 OncoStudio가 낮으므로 볼륨의 변화에서도 일관성 있을 거라 사료된다. 따라서 폐 방사선 치료를 위한 CT 촬영조건에서 낮은 관전압과 낮은 관전류에서 딥 러닝 기반 자동분할 프로그램을 사용할 때는 주의가 필요하며, 일정 관전압, 관전류 이상에서 기존에 사용하고 있는 아틀라스기반 자동분할 프로그램과 유사한 결과를 도출할 수 있었다.
본 연구는 전산화단층촬영에서 관전압과 관전류에 따른 화질과 피폭선량을 연구하고 None IR과 IR (Iterative Reconstruction)의 단계에 따른 영상의 SNR(Signal to Noise Ratio)을 비교하여 영상 화질의 개선정도에 대하여 확인해보고자 하였다. Image J를 이용하여 화질을 측정한 결과 관전압의 증가에 따라 HU (Hounsfield units)와 BN(Background Noise)은 감소하였으며, 이와 반대로 SI (Signal Intensity)와 SNR, $CTDI_{vol}$ (CT dose in dex volume)은 관전압이 높아질수록 증가하였으며, BHU(Background Hounsfield Units)의 변화는 없었다. 관전류의 증가로 인해서 BN이 감소하였고, 반대로 SNR과 CTDI은 증가하였다. 또한 IR의 단계가 높아질수록 HU와 SI, BN이 낮아지고, SNR이 약 10~60% 향상됨을 알 수 있었다. 이를 토대로 임상에서 IR 적용 시 단계적 접근 방식으로 관전압과 관전류를 미세 조정하여 점차적으로 방사선량을 줄여 나가야 할 것이다.
Digital Radiography(DR)는 film/screen(F/S)과 비교하여 넓은 계조와 높은 Detective Quantum Efficiency(DQE), Modulation Transfer function(MTF)를 바탕으로 화질의 개선과 저 선량으로 검사가 가능할 것으로 예상됐지만 기대와는 다르게 과노출이 Signal to Noise Ratio(SNR)향상을 가져 오면서 환자 피폭선량의 증가를 가져오게 되었으며 이는 Dose Creep이라는 개념으로 설명 된다. DR에서의 선량 증가 이유는 F/S의 촬영에서 사용했던 관전압(kVp)을 고정 적용하여 Auto Exposure Control(AEC)를 사용하기 때문에 과노출을 유발 할 수 있다. 이에 본 논문은 DR에서 적합한 일반촬영 방법을 제안하고자 관전압이 대조도에 주는 영향, 관전류(mA)변화에 따른 MTF 측정, 머리 모형을 촬영한 영상의 Peak Signal to Noise Ratio(PSNR) 측정을 통해 정량적 평가를 시행 하였다. 그 결과 관전압에 의한 대조도 변화는 후보정 이후 개선이 가능하며, 관전류에 의한 MTF 측정 결과 50%영역은 1.41~1.39 lp/mm, 10% 영역은 3.19~2.8 lp/mm로 관전류 변화에 따른 초점크기 변화는 영상의 해상력에 영향을 주지 않는다. 영상의 PSNR측정 결과는 관전압과 관전류가 증가 하여도 90kVp를 제외하고 30dB 이상으로 시각에 의한 영상의 차이를 인지하기 어렵다. 실험결과를 바탕으로 디지털 일반촬영에서 관전압은 80kVp 이상 100kVp이하, 관전류는 선예도와 상관 관계가 없으므로 선량과 조사시간을 단축 시킬 수 있는 방향으로 사용하기를 제안한다.
일반촬영의 저관전압 촬영에서 발생되는 저 에너지 X-선은 신체에 흡수가 많고 영상 품질 향상에는 도움을 주지 못한다. 본 연구에서는 일반 촬영에서 적정 농도를 유지하면서 환자의 피폭 선량을 줄이기 위해 농도에 따른 관전압 15%법칙과 농도에 비례하는 관전류량을 이용하여 면적 선량과 입사표면선량을 측정하여 환자의 피폭선량을 비교하였다. Hand, Knee, Abdomen, Skull 촬영에서 kVp를 115%까지 증가하면서 mAs를 50%까지 감소시키고, kVp를 85%까지 감소시키고 mAs를 200%까지 증가시키면서 면적선량과 입사표면선량을 측정하여 각각의 선량을 비교하였다. 그리고 각 영상의 5군데를 정하여 농도를 측정하고 Kruskal wallis H 검증을 하여 집단-간의 유의확률을 알아보았다. 농도를 일정하게하기 위해 관전압을 115%로 증가하고, 관전류를 50%로 감소시킨 조건에서 각 부위별 평균 면적선량과 입사표면선량을 측정한 결과 기준 선량을 100%로 할 때 각각 58.68%, 59.85%로 감소하고, 관전압을 85%로 감소하고 관전류를 200%로 증가시킨 조건에서 각각 147.28%, 159.9%로 증가하였다. 농도 변화를 비교한 결과 Hand, Knee, Abdomen, Skull 촬영 모두 유의확률 >0.05 나타나 농도 변화는 없는 것으로 나타났다. 해상력과 대조도에 영향을 주지 않는 범위에서 적정한 계산을 통해 관전압을 증가시키고 관전류를 낮게 해서 촬영하는 것이 적정농도를 유지하면서 환자의 피폭 선량을 줄이는 간단한 방법으로 사료된다.
본 연구의 목적은 하지 혈관조영검사에서 매개변수인 관전류 (mA)와 SOD에 대한 조영제 농도(300, 320, 350) 희석률의 관계가 화질에 미치는 영향을 알아보는 데 있다. 이를 위해 말초혈관 직경 크기로 자체 제작한 3 mm 혈관모형 Water 팬텀을 이용하여, 관전류 (mA), SOD 변화와 조영제 농도(300, 320, 350) 희석률 변화의 관계를 SNR 값과 CNR 값으로 측정하고 변동계수를 (cv < 10) 분석하였다. SNR 값과 CNR 값의 측정에 사용된 소프트웨어는 Image J 1.50i, (NIH) National Institutes of Health, USA)로, PACS에 전송된 의료영상표준(DICOM, digital imaging and communications in medicine) 3.0 파일에서 팬텀에 대한 관심영역(ROI, region of interest)과 배경(Background)의 영상 신호를 수치적으로 확인한 후 평균 신호값(MPV, mean pixel value)과 표준편차(SD, standard deviation)를 이용하였다. 관전류 변화에 대한 조영제 농도별 희석률에서 관전류 (146 mA)과 관전류 (102 mA)의 SNR과 CNR 비교결과, SNR과 CNR 모두 CM : N/S 희석률 (100% ~ 30% : 70%) 구간까지 변동계수 값이 10 이하로 작게 나타났으나, CM : N/S 희석률 (20% : 80%~ 10% : 90%) 구간에서는 변동계수 값이 10 이상으로 나타났다. SOD 변화에 대한 조영제 농도별 희석률에서 SOD (32.5 cm)과 SOD (22.5cm)의 SNR과 CNR 비교 결과, SNR과 CNR 모두 CM : N/S 희석률 (100% ~ 30% : 70%) 구간까지 변동계수 값이 10 이하로 작게 나타났으나, CM : N/S 희석률 (20% : 80%~ 10% : 90%) 구간에서는 변동계수 값이 10 이상으로 나타났다. SOD 변화에 대한 조영제 농도별 희석률에서 SOD (32.5 cm)과 SOD (12.5cm)의 SNR과 CNR 비교 결과, SNR과 CNR 모두 CM : N/S 희석률 (100% ~ 30% : 70%) 구간까지 변동계수 값이 10 이하로 작게 나타났다. 그러나 CM : N/S 희석률 (20% : 80%~ 10% : 90%) 구간에서는 변동계수 값이 10 이상으로 나타났다. 결과적으로 인터벤션에서 하지 말초혈관조영술을 포함한 다른 검사나 시술에서 낮은 관전류 값을 설정하고, 테이블은 영상수상기에 최대한 가깝게 하여, 조영제 농도(300)을 CM : N/S 희석률 (30% : 70%)로 사용하는 것이 신장에 대한 부담과 피폭에 대한 부담을 동시에 줄이면서 적정 농도의 영상을 얻을 수 있는 가장 효율적인 방법으로 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.