• Title/Summary/Keyword: 관입 지수

Search Result 61, Processing Time 0.019 seconds

Dynamic Analyses on Embedded Piles Based on Wave Equation (파동방정식에 근거한 매입말뚝의 동적 분석)

  • Seo, Mi-Jeong;Park, Jong-Bae;Park, Yong-Boo;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.5-13
    • /
    • 2015
  • For the bearing capacity evaluation, dynamic pile tests instead of static pile tests have been commonly used in embedded piles, which are known to have low noise and low vibration construction method. The objective of this study is to analyze the bearing capacity and penetration behaviors of embedded piles, which are constructed in different ground conditions, by using force and velocity signals obtained in the final blows during construction of embedded piles. For the dynamic pile analyses, the CAse Pile Wave Analysis Program (CAPWAP) and Wave Equation Analysis of Piles (WEAP) have been commonly used. In this study, the CAPWAP and WEAP are used for the analyses of the dynamic pile tests, which are conducted on embedded piles. The input values, output values, and force-velocity graphs of CAPWAP determined by analyzing the measured force-velocity signals are investigated. In addition, similar force-velocity singals are obtained from the WEAP by analyzing the input values of the WEAP. Considering the subsurface investigation results around the pile tips, if the N-value increases exponentially along the depth, toe quake value should be small, and therefore large bearing capacity is identified. On the contrary, if the N-value increases linearly, the bearing capacity is small because of large toe quake value. Furthermore, the stiffness of hammer cushion and pile cushion, which is difficult to find correct values, is recommended lower than 500 kN/mm. This study demonstrates that the results of WEAP may be similar to those of CAPWAP and the WEAP can be used to estimate the bearing capacity of embedded piles.

Ground Characterization of the Cheongju Granite Area Using the Geophysical Methods (물리탐사를 이용한 청주 화강암 지역의 지반특성 파악)

  • Kim Ji-Soo;Han Soo-Hyung;Seo Yong-Seok;Lee Yong-Jae
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2005
  • This research is aimed at investigating the ground characterization of the Cheongju granite area using the geophysical methods. Test site was chosen from the building site in Chungbuk University, Chongju, Chungbuk province. Furthermore, geophysical methods are employed on the outcrops in the east to map the distribution of fault and intrusion and reveal the degree of weathering. The subsurface structure mapped from seismic re-fraction survey mainly consists of two units of weathered soil and rock. Threshold of the units were determined on the basis of seismic velocity of 800 m/s, supported from the standard classification table. From the results of standard penetrating test(SPT), these units are found to show medium-high and high density, respectively. Weathering soil is subdivided in unsaturated layer and saturated layer with thresholds of seismic velocity (500 m/s) and resistivity (200 ohm-m). In particular, unsaturated layer is again classified into dry and wet portions using the GPR section. The boundary between unsaturated and saturated weathering soils corresponds to the groundwater table at depth of approximately 5~6.2 m, which is well correlated with the one from drill-core data. However, bedrock is not delineated by geophysical methods. In the GPR section, fault and intrusion observed on the outcrop are revealed not to extend to the building site. With respect to weathering degree, the outcrop characterized by low resistivity and velocity corresponds to the grade of 'completely weathered' from the geotechnical investigations.

Partial Drainage Characteristics of Clayey Silt with Low Plasticity from the West Coast (서해안 저소성 점토질 실트 지반의 부분배수 특성)

  • Kim, Seok-Jo;Lee, Sang-Duk;Kim, Ju-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.17-27
    • /
    • 2016
  • Parial drainage characteristics of clayey silt with low plasticity from the west coast (Incheon and Hwaseong) was analyzed using CPTU based existing correlation equations and compulsory replacement method. Generally, the estimated $OCRs={\kappa}{\cdot}((q_t-{\sigma}_{vo})/{\sigma}^{\prime}_{vo})$ using Powell and Quartman(1988) were higher than those obtained by the oeodometer tests. These trends were noticeable for the layers containing a lot of silty and sand soils. The assessment of partial drainage conditions was performed through Schnaid et al. (2004)'s equation; it is based on plotting the normalized cone resistance, $Q_t$ versus the pore pressure parameter, $B_q$ in combination with the strength incremental ratio, $s_u/{\sigma}^{\prime}_{vo}$ to the CPTU data. It is evident that more than half of the data fall in the range where $B_q$ < 0.3, corresponding to the domain in which the partial drainage prevails when testing normally consolidated soils at a standard rate of penetration (2 cm/s). To estimate the replacement depth of clayey silt with low plasticity, back analysis was carried out to evaluate the internal friction angle based on where the design depths are equal to the checked depths using bearing capacity equation. The internal friction angels obtained from the back analysis tended to increase as the plasticity index decreases, which is ranged approximately from ${\varphi}^{\prime}=2^{\circ}$ to ${\varphi}^{\prime}=7^{\circ}$.

Analysis of Power Requirement for 105 HP Agricultural Tractor during Rotary Tillage Operation (로타리 작업 시 105마력급 농업용 트랙터의 소요동력 분석)

  • Kim, Wan-Soo;Choi, Chang-Hyun;Park, Seong-Un;Kim, Yong-Joo
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.8-8
    • /
    • 2017
  • 본 연구는 로타리 작업에 따른 105마력급 농업용 트랙터의 소요동력을 분석하기 위하여 수행되었다. 소요동력 측정 시스템은 차축 토크미터, PTO 토크미터, 주/보조 유압센서, 데이터 수집장치를 이용하여 구성하였다. 시험에 사용된 트랙터는 동양물산 105 HP급 트랙터 (S07, TYM, Korea)이며, 작업기는 로타베이터 (SW 230GL, Sungwoo Industrial Co. Ltd, Korea)를 사용하였다. 포장시험은 전라북도 부안군에 죽림길에 위치한 $4,000m^2$ ($100m{\times}40m$) 크기의 경작지 2곳에서 수행하였다. 포장시험 시 작업 단수는 주행단수 L3단 (2.38 km/h)에서 PTO 단수 1단 (540 rpm)과 2단 (750 rpm)으로 설정하였고, 로타리 작업 시 경심은 13 cm 조건에서 실시하였다. 트랙터 작업은 동양물산의 성능시험 업무를 맡고 있는 숙련된 작업자가 숙달된 방법으로 수행하였다. 포장시험지의 토양환경은 임의의 15곳에서 채취한 시료를 이용하여 토성, 함수율, 원추 관입지수에 대하여 미국 농무부 (USDA)법을 기준으로 분석하였다. 토양환경 분석 결과 토성은 Sandy loam (사양토), 평균 함수율은 35.15%, 평균 원추관입지수는 1,562 kPa로 나타났다. PTO 1단 작업 시 트랙터의 평균 소요동력은 차축, PTO, 주 유압, 보조 유압에 대하여 각각 1.8, 54.0, 1.3, 그리고 1.1 hp로 나타났다. PTO 2단 작업 시 트랙터의 평균 소요동력은 차축, PTO, 주 유압, 보조 유압에 대하여 각각 1.2, 79.4, 1.2, 그리고 1.0 hp로 나타났다. PTO 1단 작업 시 소요동력의 합은 58.2 hp로, 정격 마력 (105 hp) 대비 55.43 % 사용한 것으로 나타났으며, PTO 2단 작업 시 소요동력의 합은 82.8 hp로, 정격 마력 대비 78.85% 사용한 것으로 나타났다. PTO 1단 대비 2단에서는 PTO를 제외한 차축, 주 유압, 보조 유압의 소요동력이 감소하였으나, PTO에서 약 1.47배로 크게 증가하여 전체적으로 소요동력이 증가한 것으로 나타났다. 향후 다양한 작업기 및 작업 단수에 따른 소요동력을 분석하여 농업용 트랙터의 모든 부하 조건에 대한 데이터베이스 구축에 관한 연구를 수행할 예정이다.

  • PDF

Correlation Analysis between Soil Shear Strength Parameters and Cone Index Using Artificial Neural Networks - 1 (인공신경망을 적용한 지반 전단강도정수와 콘지수 사이의 상관관계 분석 1)

  • Moon, In-Jong;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2234-2241
    • /
    • 2015
  • This study has been undertaken to develop a relationship between the shear strength coefficients and the cone index. The theoretic mathematical equations for the relationship were rigorously investigated, and then a Artificial Neural Network(ANN) analysis was adapted to enhance the reliability of the investigation. The theoretical investigation involved various assumptions resulting in the significant error involvement of geotechnical behaviors of ground. Therefore, a model using the ANN has been learned to enhance the prediction of the cone index form the shear strength parameters. Site investigation reports from various construction fields were used for ANN model learning. The results of the study show that the model predicts the cone index from the shear strength parameters of soils very well. The further study that is undertaking has a potential promise of the generalized prediction technique for the cone index from the soil parameters.

Bearing Capacity of Pavement Foundation by Waste Lime Material using the Dynamic Cone Pentrometer (동적 콘관입시험기를 이용한 폐석회 혼합 도로노반 성토체의 현장 지지력 평가)

  • Kim, Young-Seok;Hong, Seung-Seo;Bae, Gyu-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.927-935
    • /
    • 2011
  • In-situ California Bearing Ratio(CBR) test has been widely used for evaluating the subgrade condition in pavements. However, because the in-situ CBR test is expensive and takes time for operation, it is difficult to figure out the in-situ characteristics of subgrade strength in detail. For faster and economical operation, the Dynamic Cone Penetrometer(DCP) has been often utilized for estimating the subgrade strength in the field. The purpose of this paper is to determine the relationship between CBR value and DCP index of the embankment constructed with mixtures of soil and waste lime. Waste lime used in this study is producted as a by-product in the manufacturing process of making $Na_2CO_3$ from local chemical factory in Incheon. In this field measurement, the geotechnical tests such as field water content, field density, field CBR test, and dynamic cone penetration test were conducted.

Soil Characterization of the Field where Rice has been Cultivated during Five Years (최근 5년간 벼농사 논의 토양 특성 연구)

  • Cha, Eun-Jin;Lee, Jin-Kyeong;Jang, Min-Ho;Choi, Min-A;Kim, Jae-Hyun;Han, Seung-Je;Park, Jin-Hee;Shin, Chang-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.8-13
    • /
    • 2021
  • The study for soil has been conducted separately by several areas such as soil mechanics and soil chemistry. Soil is important in terms of prediction of how the plant grow with nutrient requirement. Also, soil is important for machines to work on to solve labor shortage and save farmers from harsh environment during farm work. To meet diverse needs related to soil in agriculture, the soil related study needs to be conducted synthetically. Thus, we tried to obtain the data related to soil chemistry including pH and Electrical Conductivity (EC) with data related to soil mechanics including Cone Index (CI), moisture content, soil classification. Specifically, the condition of the field was set to be cultivated at least for five years continuously at a first step. The soil was taken from 30 sites. CI was obtained using the soil penetrometer and soil classification was conducted using sieve analysis with eight kinds of sieve. The soil was taken on December when is during winter in Korea. There was variation of data including moisture content and CI.

Potential Study for the Sedimentary Exhalative Pb-Zn Mineralization in Dyusembay Area, Kazakhstan (카자흐스탄 듀셈바이지역의 퇴적분기형 연-아연 광화작용에 대한 잠재력 연구)

  • No, Sang-gun;Lee, Seung-han;Park, Ki-woong;Jeong, Hyeon-guk;Yun, Ji-seong;Kim, Sun-ok;Park, Maeng-eon
    • Economic and Environmental Geology
    • /
    • v.51 no.3
    • /
    • pp.213-222
    • /
    • 2018
  • Metasediment-hosted Pb-Zn mineralized zone has been found in Dyusembay of Kazakhstan. Its petrological properties, metal index, alteration index and redox-sensitivity are compared with those of SEDEX type deposit. Mineralization is developed along foliation of host rock (graphitic phyllite) and controlled by folds and faults; major ore minerals including pyrite, pyrrhotite, sphalerite, and galena are disseminated or interlayered with fine-grained quartz. The margin of the mineralized zone is metamorphosed accompanying sericite and chlorite. Hydrothermal brecciation and Pb-Zn mineralization formed in quartz-calcite stockworks are confirmed at the around of Maytyubin granitoid intrusions. The mineralization is classified into three types according to those of occurrence, paragenesis, chemical composition and isotopic characteristics. Type 1 whose fine-grained pyrite, pyrrhotite and sphalerite are formed in parallel yet discontinuous to well-developed foliations of the host rock; its geochemistry is similar to those of the earlier stage in SEDEX-type mineralization. In case of type 2, the ore minerals of which are concentrated being parallel to a foliation by regional metamorphism, and most of them associated with quartz and muscovite (${\pm}$ biotite) paragenetically. Type 3 is formed in the hydrothermal breccia zone whose ore minerals are controlled by foliation and breccia and developed in quartz ${\pm}$ calcite veins having a form such as stratification, stockwork or veinlets. Host rocks in the mineralized zone indicate homogeneous metamorphic grade and there is no specific alteration zonation. Also, all types (type 1, type 2, and type 3) represent similar REEs patterns, it can be interpreted that these are originated from a same source. Sulphides occurred in mineralized zone indicate a limited range of sulphur isotope values (type 2, ${\delta}^{34}S=-13.3{\sim}-11.7$‰; type 3, ${\delta}^{34}S=-13.9{\sim}-8.2$‰), and a result of geothermometry presents different temperature ranges: type 2($251{\pm}38^{\circ}C{\sim}277{\pm}40^{\circ}C$); type 3($360{\pm}2^{\circ}C$ to $537{\pm}29^{\circ}C$). It is estimated to be due to the effect of metamorphism and Maytyubin granitoid intrusions, respectively. In addition, ternary chart of thorium, scandium, and zircon for discrimination of tectonic setting and redox sensitivity using V/Mo values indicate that hydrothermal sediments put on reduction environment after precipitation, before being affected by metamorphism and intrusion activity. Geochemical data are plotted on a distal trend of SEDEX-type with discrimination plot using SEDEX index. As a result, petrological-geochemical properties demonstrate that Dyusembay Pb-Zn mineralized zone is comparable to distal-type of SEDEX deposit.

Application of Ground Penetrating Radar for Estimation of Loose Layer (지반 이완구간 추정을 위한 지하투과레이더의 적용)

  • Hong, Won-Taek;Kang, Seonghun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.41-48
    • /
    • 2015
  • An investigation of a void and a loose layer of the ground is essential in order to prevent the losses of life and properties caused by subsidence and sinkage of the ground. Recently, studies on the ground penetrating radar survey have been actively conducted in order to estimate the void and the loose layer of the ground. However, an error can be committed by contrarily predicting a dense ground and a loose layer because the ground penetrating radar estimates an interface depth between geo-materials that have different electrical impedances. In this study, a loose ground depth is estimated using the characteristics of the reflected electromagnetic wave obtained from the ground penetrating radar survey. To gather the signals according to the loose ground depths, the ground penetrating radar survey is conducted on a field which underwent a huge ground settlement. In addition, the dynamic cone penetration test is performed to verify the result of the loose ground depth estimation from the ground penetrating radar survey. From the analysis of the reflection characteristics of the electromagnetic wave, a phase of an electromagnetic wave reflected from a denser soil layer is found to be identical with that of the first measured signal. On the other hand, a phase of an electromagnetic wave reflected from the loose soil layer is found to be opposed to that of the first detected signal. The comparison between the dynamic cone penetration index and electromagnetic signals by the ground penetrating radar shows that the estimated depth of the loose or dense layer is perfectly matched with a high reliability. The ground penetrating radar survey and the signal analysis performed in this study can be used not only for the survey of interface depth between the discontinuity layers but also for the estimation of the loose layer.

Piezocone Factors of Korean Clayey Soils (국내 점성토 지반의 피에조콘 계수)

  • 장인성;이선재;정충기;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.15-24
    • /
    • 2001
  • In order to evaluate undrained shear strength of clayey soils using Piezocone Penetration Test (CPTu), piezoncone factor is utilized. Commonly, piezoncone factors determined by empirical basis were preferred, which were established by correlation between measurements of piezocone test and undrained strengths obtained from other shearing tests. However, previous studies on the empirical piezocone factors were site-specific and there have been no systematic investigations on the effect of both engineering characteristics of clayey soils and soil non-homogeneity on the piezocone factor. Accordingly, the direct application of the previous results to Korean clayey soils without verification may be inappropriate. In this study, empirical piezocone factors are evaluated by comparing 46 CPTu results of 10 test sites with undrained shear strength obtained from Field Vane Test (FVT) and laboratory triaxial tests. Their reliabilities are investigated by the comparison with the previous piezocone factors and the deviation of data distribution from the mean values. And the effects of referencing test methods and typical engineering characteristics of clayey soils such as overconsolidation ratio (OCR) and plastic Index (I$_{p}$) are examined. Because piezocone factors obtained for various soil conditions are widely distributed, it is not appropriate to use the mean value as a representative. Instead, it is recommended to apply the piezocone factors with OCR, which is found to be a major factor in deriving piezocone factor. The necessitated piezocone factors are presented.d.

  • PDF