• Title/Summary/Keyword: 관입

Search Result 1,085, Processing Time 0.029 seconds

A Study on the Space Planning and Landscape of 'Unjoru(雲鳥樓)' as Illustrated in the Family Hereditary Drawing, "Jeolla Gurye Ohmidong Gado(全羅求禮五美洞家圖)" ('전라구례오미동가도(全羅求禮五美洞家圖)'를 통해 본 운조루(雲鳥樓)의 공간배치계획과 경관 고찰)

  • Shin, Sang-sup
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.4
    • /
    • pp.48-63
    • /
    • 2013
  • The results of the study on the space planning and landscape design of Unjoru(雲鳥樓) through the 'Jeolla Gurye Omidong Gado(全羅求禮五美洞家圖)' drawn using GyeHwa(界畵) technique are as follows. First, 'Omidong Gado' is believed to date back to the period when Unjoru(1776~1783) was established for the following reasons: (1) The founder, Yoo-IJu(柳爾?), sent the drawing for the house while he was serving as the governor of YongCheon county(龍川府史). (2) It shows the typical dwelling houses' space division and its location is in a good spot with mountain in the back and water in front(背山臨水) and there is every indication of scheme drawing. (3) Front gate was changed and remodeled to a lofty gate in 1804. Second, Nogodan & Hyeongjebong of Jiri Mountain sit at the back of Unjoru, and faces Obong mountain and Gyejok mountain. In addition, the Dongbang stream flowing to the east well illustrates the Pungsu theory of mountain in the back and water in the front. Third, the house is structured in the shape resembling the character 品, divided into 5 areas by hierarchical order in the cross line from all directions. The site, which includes the outdoor yard and the back garden, consists of 5 blocks, 6 yards and 2 gardens. Fourth, the outdoor yard with aesthetical value and anti-fire function, is an ecological garden influenced by Confucianism and Taoism with a pond (BangJiWonDo Type, 方池圓島形) at the center. Fifth, the Sarang yard(舍廊庭) is decorated with terrace garden and flower garden, and the landscaping components such as oddly shaped stone, crane, plum, pine tree, tamarisk tree and flowering plants were used to depict the ideal fairy land and centrally placed tree for metaphysical symbolism. The upper floor of Sarangchae commands distant and medium range view, as well as upwards and downwards. The natural landscape intrudes inside, and at the same time, connects with the outside. Sixth, pine forest over the northern wall and the intentionally developed low hill are one of the traditional landscaping techniques that promotes pleasant residential environment as well as the aesthetics of balanced fullness.

Volcanic Activity of the Volcanoes in the Hallasan Natural Reserve, Jeju Island, Korea (한라산천연보호구역 소화산들의 화산활동 기록)

  • Hong, Sei Sun;Lee, Choon Oh;Lim, Jaesoo;Lee, Jin Young;Ahn, Ung San
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.1-19
    • /
    • 2021
  • This study reports the Ar-Ar dating results for the volcanic rocks from small volcanoes(oreum) of the Hallasan Nature Reserve. According to the age of 40Ar/39Ar, the volcanic activity of the Hallasan Natural Reserve was started from about 192 ka ago. The basaltic trachyandesite and trachyte located in the Y valley near the Eorimok in the western part of the Hallasan Natural Reserve represent an age of about 191~192 ka, showing the oldest record of volcanic activity in the Hallasan Natural Reserve. In the Hallasan Natural Reserve, the small volcanoes older than 100 ka are Y Valley in Eorimok area (192±5 and 191±5 ka), Dongsu-Ak (184±19 ka), Mansedongsan (153±5 ka), Janggumok-Orum (135±6 ka), Eoseungsaengak (123±9 ka), Samgagbong (105±2 ka). And the small volcanoes younger than 100 ka are Witbangae-Oreum, Seongneol-Oreum, Muljangol, Yeongsil, Bori-Ak, Witsenueun-Oreum, Witsejokeun-Oreum, Heugbuleun-Oreum, Bangae-Oreum, Albangae-Oreum, Witsebuleun-Oreum, Baengnokdam, Nongo-Ak. According to the eruption of trachytes, the Hallasan Natural Reserve can be interpreted as having about 8 volcanic activities. Among them, 4 volcanic activities are related with the formation of trachyte dome, such as Wanggwanneung, Samgakbong, Yeongsil, and Baengnokdam, and 4 volcanic activities are related with flow or dyke of trachyte. The volcanic activity at the Hallasan Natural Reserve was started from northwest area, to in the southern area, and in the eastern area, and finally volcanic activity related to the formation of Baengnokdam.

Genetic Environments of Au-Ag-bearing Geumhwa Hydrothermal Vein Deposit (함 금-은 금화 열수 맥상광상의 생성환경)

  • Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.49-60
    • /
    • 2021
  • The Geumhwa Au-Ag deposit is located within the Cretaceous Gyeongsang basin. Mineral paragenesis can be divided into two stages (stage I and II) by major tectonic fracturing. Stage II is economically barren. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages(early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early substage, marked by deposition of pyrite with minor wolframite; middle substage, characterized by introduction of electrum and base-metal sulfides with Cu-As and/or Cu-Sb sulfosalts; late substage, marked by hematite and Bi-sulfosalts with secondary minerals. Changes in vein mineralogy reflect decreases in temperature and sulfur fugacity with a concomitant increase in oxygen fugacity. Fluid inclusion data indicate progressive decreases in temperature and salinity within each substage with increasing paragenetic time. During the early portion of stage I, high-temperature (≥410℃), high-salinity fluids (up to ≈44 equiv. wt. % NaCl) formed by condensation during decompression of a magmatic vapor phase. During waning of early substage, high-temperature, high-salinity fluids gave way to progressively cooler, more dilute fluids associated with main Au-Ag mineralization (middle) and finally to ≈180℃ and ≥0.7 equiv. wt. % NaCl fluids associated with hematite and sulfosalts (± secondary) mineralization (late substage). These trends are interpreted to indicate progressive mixing of high- and medium to low-salinity hydrothermal fluids with cooler, more dilute, oxidizing meteoric waters. The Geumhwa Au-Ag deposit may represent a vein-type system transitional between porphyry-type and epithermal-type.

A Prediction of N-value Using Artificial Neural Network (인공신경망을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Goo, Tae Hun;Kim, Hyung Chan
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.457-468
    • /
    • 2020
  • Problems arising during pile design works for plant construction, civil and architecture work are mostly come from uncertainty of geotechnical characteristics. In particular, obtaining the N-value measured through the Standard Penetration Test (SPT) is the most important data. However, it is difficult to obtain N-value by drilling investigation throughout the all target area. There are many constraints such as licensing, time, cost, equipment access and residential complaints etc. it is impossible to obtain geotechnical characteristics through drilling investigation within a short bidding period in overseas. The geotechnical characteristics at non-drilling investigation points are usually determined by the engineer's empirical judgment, which can leads to errors in pile design and quantity calculation causing construction delay and cost increase. It would be possible to overcome this problem if N-value could be predicted at the non-drilling investigation points using limited minimum drilling investigation data. This study was conducted to predicted the N-value using an Artificial Neural Network (ANN) which one of the Artificial intelligence (AI) method. An Artificial Neural Network treats a limited amount of geotechnical characteristics as a biological logic process, providing more reliable results for input variables. The purpose of this study is to predict N-value at the non-drilling investigation points through patterns which is studied by multi-layer perceptron and error back-propagation algorithms using the minimum geotechnical data. It has been reviewed the reliability of the values that predicted by AI method compared to the measured values, and we were able to confirm the high reliability as a result. To solving geotechnical uncertainty, we will perform sensitivity analysis of input variables to increase learning effect in next steps and it may need some technical update of program. We hope that our study will be helpful to design works in the future.

Analysis on Seismic Resistance Capacity of Hollow Concrete Block Reinforced Foundation Ground by Using Shaking Table Test (진동대 시험을 이용한 중공블록 보강 기초의 내진성능분석)

  • Shin, Eun-Chul;Lee, Yeun-Jeung;Yang, Tae Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.85-93
    • /
    • 2021
  • The seventy percentage of Korean Peninsular is covered by the mountainous area, and the depth of west sea and south sea is relatively shallow. Therefore, a large scale land reclamation from the sea has been implemented for the construction of industrial complex, residental area, and port and airport facilities. The common problem of reclaimed land is consisted of soft ground, and hence it has low load bearing capacity as well as excessive settlement upon loading on the ground surface. The hollow concrete block has been used to reinforce the loose and soft foundation soil where the medium-high apartment or one-story industrial building is being planned to be built. Recently the earthquakes with the magnitude of 4.0~5.0 have been occurred in the west coastal and southeast coastal areas. Lee (2019) reported the advantages of hollow concrete block reinforced shallow foundation through the static laboratory bearing capacity tests. In this study, the dynamic behavior of hollow concrete block reinforced sandy ground with filling the crushed stone in the hollow space has been investigated by the means of shaking table test with the size of shaking table 1000 mm × 1000 mm. Three types of seismic wave, that is, Ofunato, Hachinohe, Artificial, and two different accelerations (0.154 g, 0.22 g) were applied in the shaking table tests. The horizontal displacement of structure which is situated right above the hollow concrete block reinforced ground was measured by using the LVDT. The relative density of soil ground are varied with 45%, 65%, and 85%, respectively, to investigate the effectiveness of reinforcement by hollow block and measured the magnitude of lateral movement, and compared with the limit value of 0.015h (Building Earthquake Code, 2019). Based on the results of shaking table test for hollow concrete block reinforced sandy ground, honeycell type hollow block gives a large interlocking force due to the filling of crushed stone in the hollow space as well as a great interface friction force by the confining pressure and punching resistance along the inside and outside of hollow concrete block. All these factors are contributed to reduce the great amount of horizontal displacement during the shaking table test. Finally, hollow concrete block reinforced sandy ground for shallow foundation is provided an outstanding reinforced method for medium-high building irrespective of seismic wave and moderate accelerations.

Mineral Geochemistry of the Albite-Spodumene Pegmatite in the Boam Deposit, Uljin (울진 보암광산의 조장석-스포듀민 페그마타이트의 광물 지화학 조성 연구)

  • Park, Gyuseung;Park, Jung-Woo;Heo, Chul-Ho
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.283-298
    • /
    • 2022
  • In this study, we investigated the mineral geochemistry of the albite-spodumene pegmatite, associated exogreisen, and wall rock from the Boam Li deposit, Wangpiri, Uljin, Gyeongsangbuk-do, South Korea. The paragenesis of the Boam Li deposit consists of two stages; the magmatic and endogreisen stages. In the magmatic stage, pegmatite dikes mainly composed of spodumene, albite, quartz, and K-feldspar intruded into the Janggun limestone formation. In the following endogreisen stage, the secondary fine-grained albite along with muscovite, apatite, beryl, CGM(columbite group mineral), microlite, and cassiterite were precipitated and partly replaced the magmatic stage minerals. Exogreisen composed of tourmaline, quartz, and muscovite develops along the contact between the pegmatite dike and wall rock. The Cs contents of beryl and muscovite and Ta/(Nb+Ta) ratio of CGM are higher in the endogreisen stage than the magmatic stage, suggesting the involvement of the more evolved melts in the greisenization than in the magmatic stage. Florine-rich and Cl-poor apatite infer that the parental magma is likely derived from metasedimentary rock (S-type granite). P2O5 contents of albite in the endogreisen stage are below the detection limit of EDS while those of albite in the magmatic stage are 0.28 wt.% on average. The lower P2O5 contents of the former albite can be attributed to apatite and microlite precipitation during the endogreisen stage. Calcium introduced from the adjacent Janggun formation may have induced apatite crystallization. The interaction between the pegmatite and Janggun limestone is consistent with the gradual increase in Ca and other divalent cations and decrease in Al from the core to the rim of tourmaline in the exogreisen.

Distribution and Origin of the Mid-depth Cold Water Pools Observed in the Jeju Strait in the Summer of 2019 (2019년 여름철 제주해협에서 관측된 중층 저온수의 분포와 기원)

  • DOHYEOP YOO;JONG-KYU KIM;BYOUNG-JU CHOI
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.19-40
    • /
    • 2023
  • To investigate the role of water masses in the Jeju Strait in summer on the shallow coastal region and the characteristics of water properties in the strait, temperature and salinity were observed across the Jeju Strait in June, July, and August 2019. The cold water pool, whose temperature is lower than 15℃, was observed in the mid-depths of the central Jeju Strait and on the northern bottom slope of the strait. The cold water pools have the lowest temperature in the strait. To identify water masses comprising the cold water pool in the Jeju Strait, mixing ratios of water masses were calculated. The mid-depth cold water pool of the Jeju Strait consists of 54% of the Kuroshio Subsurface Water (KSSW) and 33% of the Yellow Sea Bottom Cold Water (YSBCW). Although the cold water pool is dominantly affected by the KSSW, the YSBCW plays a major role to make the cold water pool maintain the lowest temperature in the Jeju Strait. To find origin of the cold water pool, temperature and salinity data from the Yellow Sea, East China Sea, and Korea Strait in the summer of 2019 were analyzed. The cold water pool was generated along the thermohaline frontal zone between the KSSW and YSBCW in the East China Sea where intrusion and mixing of water masses are active below the seasonal thermocline. The cold water in the thermohaline frontal zone had similar mixing ratio to the cold water pool in the Jeju Strait and it advected toward the Korea Strait and shallow coastal region off the south coast of Korea. Intrusion of the mid-depth cold water pool made temperature inversion in the Jeju Strait and affected sea surface temperature variations at the coastal region off the south coast of Korea.

Occurrence and Chemical Composition of Carbonate Mineral from Wallrock Alteration Zone of Janggun Pb-Zn Deposit (장군 연-아연 광상의 모암변질대내 탄산염 광물의 산상 및 화학조성)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.3
    • /
    • pp.167-183
    • /
    • 2023
  • The Janggun Pb-Zn deposit consists of Mn orebody, Pb-Zn orebody and Fe orebody. The Mn orebody composed of manganese carbonate orebody and manganese oxide orebody on the basis of their mineralogy and genesis. The geology of this deposit consists of Precambrian Weonnam formation, Yulri group, Paleozoic Jangsan formation, Dueumri formation, Janggum limestone formation, Dongsugok formation, Jaesan formation and Mesozoic Dongwhachi formation and Chungyang granite. This manganese carbonate orebody is hydrothermal replacement orebody formed by reaction of lead and zinc-bearing hydrothermal fluid and Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this hydrothermal replacement orebody consists of mainly rhodochrositization with minor of dolomitization, pyritization, sericitization and chloritization. Carbonates formed during wallrock alteration on the basis of paragenetic sequence are as followed : Ca-dolomite (Co type, wallrock) → ankerite and Ferroan ankerite (C1 type, early stage) → ankerite (C2 type) → sideroplesite (C3 type) → sideroplesite and pistomesite (C4 type, late stage). This means that Fe and Mn elements were enriched during evolution of hydrothermal fluid. Therefore, The substitution of elements during wallrock alteration beween dolomitic marble (Mg, Ca) and lead and zinc-bearing hydrothermal fluid (Fe, Mn) with paragenetic sequence is as followed : 1)Fe ↔ Mn and Mn ↔ Mg, Ca, Fe elements substitution (ankerite and Ferroan ankerite, C1 type, early stage), 2)Fe ↔ Mn, Mn ↔ Mg, Ca and Mg ↔ Ca elements substitution (ankerite, C2 type), 3)Fe ↔ Mn, Fe ↔ Ca and Mn ↔ Mg, Ca elements substitution (sideroplesite, C3 type), and 4)Fe ↔ Mg, Fe ↔ Mn and Mn ↔ Mg, Ca elements substitution (sideroplesite and pistomesite, C4 type, late stage)

Geology and Mineralization of Las Bambas Cu Mine in Apurimac Porphyry Copper Metallogenic Belt, Peru (페루 아뿌리막 반암동 광화대내 라스 밤바스 구리 광산의 지질과 광화작용)

  • Bong Chul Yoo;Jorge Acosta
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.37 no.2
    • /
    • pp.77-85
    • /
    • 2024
  • Recently, the world has been declaring global carbon neutrality to curb carbon emissions, a major factor in global warming. Therfore, high-tech and clean energy industries such as renewable energy, electric vehicles, batteries, and semiconductors are rapidly developing. The Korean government selected total 33 critical minerals on based of evaluating the supply risk and economic impact of raw minerals essential for national high-tech industries (semiconductors, secondary battery, etc). Among these critical minerals, Copper, Zinc and lead have been used as basic materials in human life from the past to the present and in addition, they are currently used as an essential material for mobile phones, electric vehicles, and batteries. So, I would like to introduce the Las Bambas copper mine within Apurimac porphyry copper metallogenic belt of Peru, which have the world's 2nd (copper), 4th (zinc) and 5th (lead) largest reserves of these critical minerals. Las Bambas copper mine is the world's largest mine with copper reserves of more than 1 billion tons and is joint venture project mine invested by MMG (Minerals and Metals Group, 62.5%), Guoxin international investment company (22.5%) and CITIC metal company (15.0%). This mine mainly produces copper and also produces gold, silver and molybdenum as a by-product. The ore grade of this mine has 0.77% Cu, 0.06 g/t Au, 3.93 g/t Ag and 178 ppm Mo. Mineral resource and ore reserve of this mine have 10.5 million ton Cu (0.61% Cu) and 6.9 million ton Cu (0.73% Cu). So, this mine life is about more than 20 years. The copper mineralization of this mine occurs as skarn type and vein type related with lower limestone of Ferrobamba formation and Cenozoic monzonites.

Occurrence and Chemical Composition of White Mica from Zhenzigou Pb-Zn Deposit, China (중국 Zhenzigou 연-아연 광상의 백색운모 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.83-100
    • /
    • 2022
  • The Zhenzigou Pb-Zn deposit, which is one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. White mica from this deposit are occured only in layer ore and are classified four type (Type I : weak alteration (clastic dolomitic marble), Type II : strong alteration (dolomitic clastic rock), Type III : layer ore (dolomitic clastic rock), Type IV : layer ore (clastic dolomitic marble)). Type I white mica in weak alteration zone is associated with dolomite that is formed by dolomitization of hydrothermal metasomatism. Type II white mica in strong alteration zone is associated with dolomite, ankerite, quartz and alteration of K-feldspar by hydrothermal metasomatism. Type III white mica in layer ore is associated with dolomite, ankerite, calcite, quartz and alteration of K-feldspar by hydrothermal metasomatism. And type IV white mica in layer ore is associated with dolomite, quartz and alteration of K-feldspar by hydrothermal metasomatism. The structural formulars of white micas are determined to be (K0.92-0.80Na0.01-0.00Ca0.02-0.01Ba0.00Sr0.01-0.00)0.95-0.83(Al1.72-1.57Mg0.33-0.20Fe0.01-0.00Mn0.00Ti0.02-0.00Cr0.01-0.00V0.00Sb0.02-0.00Ni0.00Co0.02-0.00)1.99-1.90(Si3.40-3.29Al0.71-0.60)4.00O10(OH2.00-1.83F0.17-0.00)2.00, (K1.03-0.84Na0.03-0.00Ca0.08-0.00Ba0.00Sr0.01-0.00)1.08-0.85(Al1.85-1.65Mg0.20-0.06Fe0.10-0.03Mn0.00Ti0.05-0.00Cr0.03-0.00V0.01-0.00Sb0.02-0.00Ni0.00Co0.03-0.00)1.99-1.93(Si3.28-2.99Al1.01-0.72)4.00O10(OH1.96-1.90F0.10-0.04)2.00, (K1.06-0.90Na0.01-0.00Ca0.01-0.00Ba0.00Sr0.02-0.01)1.10-0.93(Al1.93-1.64Mg0.19-0.00Fe0.12-0.01Mn0.00Ti0.01-0.00Cr0.01-0.00V0.00Sb0.00Ni0.00Co0.05-0.01)2.01-1.94(Si3.32-2.96Al1.04-0.68)4.00O10(OH2.00-1.91F0.09-0.00)2.00 and (K0.91-0.83Na0.02-0.01Ca0.02-0.00Ba0.01-0.00Sr0.00)0.93-0.83(Al1.84-1.67Mg0.15-0.08Fe0.07-0.02Mn0.00Ti0.04-0.00Cr0.06-0.00V0.02-0.00Sb0.02-0.01Ni0.00Co0.00)2.00-1.92(Si3.27-3.16Al0.84-0.73)4.00O10(OH1.97-1.88F0.12-0.03)2.00, respectively. It indicated that white mica of from the Zhenzigou deposit has less K, Na and Ca, and more Si than theoretical dioctahedral mica. Compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution. It means that the Fe in white mica exists as Fe2+ and Fe3+, but mainly as Fe2+. Therefore, white mica from layer ore of the Zhenzigou deposit was formed in the process of remelting and re-precipitation of pre-existed minerals by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. And compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution during hydrothermal metasomatism depending on wallrock type, alteration degree and ore/gangue mineral occurrence frequency.