• Title/Summary/Keyword: 관입암

Search Result 227, Processing Time 0.026 seconds

Analysis of Geological Structure of Volcanic Rock Mass in Ulleung-do using Variations of Magnetic Anomaly (자력탐사 자기이상 분석을 활용한 울릉도 화산암체 지질구조 특성 해석)

  • Kim, Ki-Beom;Kim, Man-Il
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.619-630
    • /
    • 2018
  • The purpose of this study is to investigate the existence of faults and intrusive rocks in the volcanic rock mass of Ulleung-do using magnetic anomalies. The magnetic survey data show that basaltic (mafic) rocks have high magnetic anomalies and that trachytic (felsic) rocks have low magnetic anomalies, implying that the anomaly distributions can be used to distinguish between different volcanic rock types that may be covered by regolith (such as alluvial and colluvial deposits) and other sedimentary layers. Our results show that basaltic rocks are not present within the Nari caldera. However, outside the caldera, the occurrence of high magnetic anomaly values of >$1,000{\gamma}$ is presumed to reflect the existence of basaltic craters or volcanic vents that formed prior to the eruption of the trachytic rocks. In particular, the area with anomaly values of >$1,000{\gamma}$ in the vicinity of Namyang-ri, southwest of Ulleung-do, is interpreted as having a high probability of hosting a crater and vent originating from mafic volcanism.

Collapse Type and Processes of the Geumosan Caldera in the Southern Gumi, Korea (구미 남부 금오산 칼데라의 함몰 유형과 과정)

  • Hwang, Sang Koo;Son, Young Woo;Seo, Seung Hwan;Kee, Weon-Seo
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.35-48
    • /
    • 2021
  • The Gumi basin, situated in the mid-southeastern Yeongnam Massif, has the Cretaceous stratigraphy that is divided into Gumi Formation, andesitic rocks (Yeongamsan Tuff, Busangni Andesite), rhyolitic rocks (Obongni Tuff, Doseongul Rhyolite, Geumosan Tuff) and Intrusives (ring dikes, other dikes) in ascending order. The Geumosan Tuff is composed mostly of many ash-flow tuffs which are associated with Geumosan caldera along with the ring dikes. The caldera is outlined by ring faults and dikes and has about 3.5 × 5.6 km in diameters. The intracaldera volcanics show a downsag structure that is dipped inward in their flow and welding foliations. The caldera block represent an asymmetric subsidence, which drops 350 m in the northern margin and 600 m in the southern one. Based on these data, the Geumosan caldera is geometrically classified as an asymmetric piston subsidence caldera that suggests a single caldera cycle. The caldera reflects the piston subsidence of the caldera block bounded by the outward-dipping ring faults following a voluminous eruption of magma from the chamber. The downsag in the caldera block refers to the downsagging during the initial subsidence at the same time as the full development of the bound fault. In the ring fissures following the sagging, magma was injected due to the overpressure of magma chamber caused by subsidence.

Analysis of the Causes of Clustered Scismicity Registered in Yeoncheon, the Middle Part of the Korean Peninsula through Gravity Field Interpretation and Modeling (중력이상 수치해석을 통한 연천지역 군발지진 원인분석)

  • Sungchan Choi;Sung-Wook Kim;Eun-Kyeong Choi;Younghong Shin;Tae-Kyung Hong
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.633-648
    • /
    • 2022
  • Gravity data were analyzed to identify the cause of clustered seismicity that occurred intensively in Yeoncheon, located in the central part of the Korean Peninsula. Our analysis suggests that the En echelon faults developed in the northwest-southeast direction. In addition, in the eastern part of the Dongducheon Fault, it was interpreted that high-density lower bedrock intermittently lifts close to the surface due to vertical tectonic movement accompanied by a flower structure. The fracture zone of the Dongducheon Fault is estimated that the width is about 200 m, the depth is at least 5 km, and the density is about 15% lower than the adjacent rocks. It is analyzed that the shallow earthquakes that occurred within 5 km depth was concentrated along the low-density En echelon fault fracture zone developed between the high-density rocks intruding close to the surface. Therefore, the earthquakes can be interpreted as the result that the north-south stress caused by the dextral tectonic movement of the Dongducheon Fault activated the En echelon fault in the northwest-southeast direction.

Geological Structure and Deformation History in the Gwangju area, Gyeonggi-do, Korea (경기도 광주시 일대의 지질구조와 변형사)

  • Lee Hee-Kwon;Kim Man-Kwang
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.2 s.40
    • /
    • pp.108-115
    • /
    • 2005
  • Gyeonggi metamorphic complex in the Gwangju area include banded biotite gneiss and quartzofeldspathic gneiss. Detailed structural analysis suggests that structural elements in the study area were formed by at least five phase of deformations. Penetrative compositional foliations(S1) formed in the banded gneiss during the first metamorphism and deformation (D1). After intrusion of plutonic rocks, the second deformation (D2) produced S2 foliations in the banded gneiss and quartzofeldspathic gneiss during the second metamorphism. D3 structures are represented by isoclinal folds (F3) whose axial surfaces are parallel to S3 foliations. The N-S oriented shortening (D4) was accommodated by closed upright F4 fold with about 100m of axial surface separation. F4 fold is refolded by regional F5 folding resulting in different orientation and fold style of F4 fold according to the position of F5 fold. The F4 fold with tight interlimb angle is subparallel to the axial surface (north-south) of F5 fold in the core of the F5 fold. In contrast the F4 fold trends northeast in the western limb and northwest in the eastern limb of F5 fold. The interlimb angle is larger in the limbs than that in the core of F5 fold. The trace of foliations is constrained by mainly F4 and F5 folds. Joint fanning around fold is developed in the limbs of F5 fold and bc joints are dominant in the hinge area of F5 fold. A strike-slip fault had developed in tile central part of the study area after F5 folding. The orientation of joint and foliation is rotated anticlockwise about $15^{\circ}$ by the landslide occurred during the Quaternary.

Characteristics and Stratigraphic Implications of Granitic Rock Fragments in the Pyroclastic Rocks, SE Jinhae, Korea (진해시 남동부 화성쇄설암 내 화강암편의 특징과 층서적 의미)

  • Cho, Hyeong-Seong;Kim, Jong-Sun;Lee, Jeong-Hwan;Jeong, Jong-Ok;Son, Moon;Kim, In-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.116-128
    • /
    • 2007
  • Detailed geological mapping, petrographic study, analyses of geochemistry and magnetic susceptibility, and K-Ar dating were carried out in order to determine the origin, age, and stratigraphic implications of granitic rock fragments in the pyroclastic rocks, SE Jinhae city, southern part of the Gyeongsang Basin. As a result, it was found that the area is composed of volcanics and tuffaceous sediments of the Yucheon Group, Bulguksa granites, pyroclastics bearing granitic rock fragments, $basalt{\sim}basaltic$ andesite, and rhyolite in ascending stratigraphic order. The granitic rock fragments in the pyroclastic rocks are divided into granodiorite and biotite granite, which have approximately the same characteristics as the granodiorite and the biotite granite of the Bulguksa granites, respectively, in and around the study area including color, grain size, mineral composition, texture (perthitic and micrographic textures), intensity of magnetic susceptibility (magnetite series), and geochemical features (calc-alkaline series and REE pattern). This leads to the conclusion that the rock fragments originated from the late Cretaceous Bulguksa granites abundantly distributed in and around the study area, but not from the basement rocks of the Yeongnam massif or the Jurassic granites. Based on relative and absolute ages of various rocks in the study area, the pyroclastics bearing granitic rock fragments are interpreted to have erupted between 52 and 16 Ma, i.e. during the Eocene and early Miocene. These results indicate that the various volcanisms, acidic to basic in composition, occurred after the intrusion of the Bulguksa granites, contrary to the general stratigraphy of the Gyeongsang Basin. Very detailed and cautious mapping together with relative and absolute age determinations are, thus, necessary in order to establish reliable stratigraphy of the Yucheon Group in other areas of the Gyeongsang Basin.

Petrology of the Blastoporphyritic Granite Gneiss in the Southwestern Part of the Sobaegsan Massif (소백산육괴 서남부의 잔류반상 화강편마암의 암석학적 연구)

  • Lee, Choon-Hee;Lee, Sang-Won;Ock, Soo-Seck;Song, Young-Sun
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.528-547
    • /
    • 2001
  • The blastoporphyritic granite gneiss (BPGN) including much alkali-feldspar megacrysts occurs in Jiri mountains area, southwestern part of Sobaegsan massif, Korea. The BPGN is formed gneiss complexes with other gneisses in Precambrian. The BPGN was named as porphyroblastic gneiss with porphyroblasts of alkali-feldspar megacrysts by other researchers, but the BPGN includes of euhedral alkali-feldspars (microcline), and the boundary with the granitic gneiss represents sharp contact as intrusive relationship. The BPGN mainly composes of alkali-feldspar megacrysts, quartz, plagioclase, K-feldspar and biotite some almandine and accessary minerals are muscovite, chlorite, apatite, zircon and opaques. The alkali-feldspar is microcline with perthitic texture. An content of plagioclases show 30 to 40. Biotites occur two type, one is Brown biotite which shows compositional ranges of Mg/Fe+Mg ratios from 0.38 to 0.52, the other is Green Bt. which is retrograde product. Camels to be various sizes and shapes have composition of almandine with 73 to 80 mole percent, but represent retrogressive zoning from core (X$_{pyr}$: 15.9${\sim}$20.8) to rim (X$_{pyr}$:13.7${\sim}$15.9) to be evidence of retrograde metamorphism. Megacrysts of alkali-feldspar in the BPGN show rectangular shape of euhedral and some become ellipsoidal or spheroidal in shape and the average size up to 20 cm long. The megacryst includes of biotite, plagioclase and quartz, and rarely euhedral apatite as inclusions. In petrochemistry the BPGN represents granodiorite composition, characteristics of peraluminous S-type granitoid and calc-alkaline features.

  • PDF

Petrological Study on the Spherulitic Rhyolite in the Jangsan Area, Busan (부산 장산 지역의 구과상(球課狀) 유문암에 대한 암석학적 연구)

  • Park, Sumi;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.219-233
    • /
    • 2013
  • Spherulitic rhyolite occur as part of ring dyke which showing a vertical flowage of $60^{\circ}{\sim}90^{\circ}$, of the Jangsan cauldron was studied. The spherulites range in diameter from a few millimeters to 2.8 centimeters or more, and average 5~10 millimeters. It belongs to radiated simple spherulite type. They consist of a core of moderate brown dense material encased by a thin crust, a few millimeters thick at most of white grey material. The spherulites frequently have a radiating fibrous structure, which are thought to have formed as a consequence of rapid mineral growth caused by very fast cooling of the dykes in shallow depth near the surface. EPMA examination of the concentric-zoned core of spherulites show that they are mainly composed of cryptocrystalline-fibrous intergrowth of silica minerals and alkali feldspars which have $SiO_2$ 82% or more, $Al_2O_3$ 7~10%, $Na_2O+K_2O$ less than 8%. The feldspar compositions of the spherulites lie essentially within the sanidine field. XRD examination show that spherulites are mainly composed of quartz, sanidine, albite with minor mica, kaolinite and chlorite. According to X-ray mapping, the spherulites are enriched in $SiO_2$ in the core and partly enriched $Na_2O$ or $K_2O$, $Al_2O_3$ in the shell that reflect in compositional zoning with increasing spherulitic devitrification. The feathery and non-equant crystal shapes of spherulites from rhyolite dyke of Jangsan cauldron suggest that they may have formed during the rapid cooling of dyke under the static state, or faster velocity of devitrification from glassy materials than movement velocity of the magma intrusion. The spherulitic rhyolite originated from high-silica(75.4~75.7 wt.%) rhyolite magma.

A Study on the Hull-dimension of 89 ton class Stow-net Vessel with Stern-fishing (89톤급 선미식 안강망어선의 선형치수에 관한 연구)

  • Park, Je-Ung;Lee, Hyeon-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.3
    • /
    • pp.159-165
    • /
    • 1997
  • This paper presents the optimum dimension of 89 ton class stow-net vessel with stern-fishing. The model of basic design is developed by using the optimization techniques referring to objective function and numerous constraints as follows; speed, fishing quantity, fishing days, catch per unit effort(CPUE), and weight/ratio of main dimensions, etc. Thus, the basic design of stow-net fishing vessel is built up by using the optimization of the design variables called the economic optimization criteria, and the objective function represents the criterion which is cost benefit ratio(CBR). The main conclusions are as follows. 1. S/W for decision of optimum hull size is developed in 89 ton class stow-net fishing vessel which is constructed with optimization of the design variables called the economic optimization criteria. 2. For optimum ship dimensions in 89 ton class stow-net fishing vessel, the hull dimensions can be obtained in the range of L= 27.3m, B = 6.6m, D = 2.80m, Cb = 0.695, T/D = 0.80, $\Delta$(displacement)=281.7ton with 10 knots.

  • PDF

A Preliminary Study on the Igneous Layering and Concentration of Fe-Ti Oxide Minerals within Amphibolite in Soyeonpyeong Island (소연평도 각섬암 내 화성기원 층상구조와 Fe-Ti 산화광물의 농집에 관한 예비연구)

  • Kim, Eui-Jun
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.375-387
    • /
    • 2017
  • Amphibolite-hosted Fe-Ti mineralization at the Soyeonpyeong Island, located in central western part of the Korean Peninsula is a typical orthomagmatic Fe-Ti oxide deposit in South Korea. The amphibolite intruded into NW-SE trending Precambrian metasedimentary rocks. Lower amphibolite is characterized by igneous layering, consisting of feldspar-dominant and amphibole-Fe-Ti oxide-dominant layers. The igneous layering shows complicated and/or sharp contact. In contrast, upper amphibolite has a more complicated lithofacies (garnet-bearing, coarser, and schistose), and massive Fe-Ti oxide ore alternates with schistose amphibolite. NS- and EW-trending fault systems lead to redistribute upper amphibolite-hosted Fe-Ti orebody and igneous layering of lower amphibolite, respectively. The whole-rock compositions of amphibolite and Fe-Ti oxide ore reflect their constituent minerals. Amphibolite shows significantly positive Eu anomalies whereas Fe-Ti oxide ore has weak negative Eu anomalies. Plagioclase (Andesine to oligoclase) and Fe-Ti oxide minerals have constant composition regardless of their distribution. Amphibole has a compositionally variable but it doesn't reflect the chemical evolution. Mineral compositions within individual layers and successive layers are relatively constant not showing any stratigraphic evolution. This suggests that there are no successive injections of Fe-rich magma or assimilation with Fe-rich country rocks. Contrasting Eu anomalies between amphibolite and Fe-Ti oxide ore also suggest that extensive plagioclase fractionation during early crystallization stage cause increase in $Fe_2O_3/FeO$ ratio and overall Fe contents in the residual magma. Thus, Fe-rich residual liquids may migrate at the upper amphibolite by filter pressing mechanism and then produce sheeted massive Fe-Ti mineralization during late fractional crystallization.

Geophysical Study on the Geoelectrical Structure of the Hwasan Caldera in the Euisung Sub-basin Using Magnetotelluric Survey (자기지전류 탐사를 이용한 의성소분지 화산 칼데라의 지구물리학적 연구)

  • Yang, Jun-Mo;Kwon, Byung-Doo;Cho, In-Ky;Lee, Heui-Soon;Park, Gye-Soon;Um, Joo-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.99-108
    • /
    • 2008
  • To extend our detailed knowledge for the Hwasan caldera, we carried out magnetotelluric (MT) survey, which is pretty sensitive to electrical property variation in both horizontal and vertical direction of subsurface, across the Hwasan caldera with the direction of EW. The 2-D inversion results of observed MT data lead to following conclusions. Firstly, the depth of the basin basement inferred by the MT inversion results matches well with that suggested by previous potential studies, but the basement resistivity seems fairly low when compared to that of general case. This feature might be related with the large-scaled, highly conductive layer beneath the Euisung Sub-basin suggested by the previous MT study. Secondly, the high resistivity zones reaching to 4000 $\Omega{\cdot}m$ are imaged around two external ring fault boundaries. These zones are thought of as the response of the rhyolitic dykes intruding along the ring fault, and in the previous gravity data correspond to relatively high density anomalies. Thirdly, low resistivity zone reaching to 200 $\Omega{\cdot}m$ is detected around a depth of 1km beneath the central part of the caldera, which has not been yet reported in korean geophysical literatures. If we take account of the evolution model of the Hwasan caldera, this zone is regarded as the past sedimentary layer that subsided during the period of forming external ring fault system. In addition, the relatively low density anomaly observed in the central part of the caldera may be attributed to this sedimentary layer.