• 제목/요약/키워드: 관심영역 자동선택

검색결과 26건 처리시간 0.028초

토지피복 공간정보를 활용한 자동 훈련지역 선택 기법 (Automatic selection method of ROI(region of interest) using land cover spatial data)

  • 조기환;정종철
    • 지적과 국토정보
    • /
    • 제48권2호
    • /
    • pp.171-183
    • /
    • 2018
  • 급속한 위성영상 공급확대에도 불구하고 자동화되지 못한 영상처리과정으로 인해 영상활용이 제약받는 경우가 많다. 본 연구에서는 감독영상분류를 위한 훈련지역 선택과정을 자동화함으로써 영상처리과정의 비용과 시간을 절감하는 방안을 제시하였다. 이를 위해 기존의 토지피복 정보를 활용하여 훈련관심영역을 추출하는 방법을 최신영상에 적용하여 토지피복분류를 실행한 후 분류정확도를 평가하였다. 원주시 도심지역을 대상지로 하여 토지유형을 시가지역과 농지/초지, 숲, 나대지 및 수계로 나누고 유형별 훈련관심영역을 환경부 중분류 토지피복지도를 활용하여 선택하였다. 관심영역 선택을 위해 먼저 토지피복지도 폴리곤 경계를 기준으로 negative buffer (-15m)를 적용하여 새로 폴리곤을 만들었고 너무 작은 폴리곤(<$2,000m^3$)과 큰 폴리곤(>$200,000m^3$)을 제외하였다. 선택된 폴리곤들의 밴드별 반사율 표준편차와 평균값 및 NDVI의 평균값을 계산하였다. 이 정보를 이용하여 먼저 표준편차가 적은 폴리곤 (폴리곤 내 반사율 값의 편차가 크지 않은 폴리곤)을 선택한 후 이들 중 반사율 평균값이 각 유형의 특징적인 분광특성을 반영할 수 있는 폴리곤을 관심영역으로 선택하였다. 2017년 Sentinel-2영상을 활용하여 토지피복유형을 분류한 결과 86.9%의 분류정확도($\hat{K}=0.81$)가 도출되었다. 본 연구에서 시도된 자동 관심영역 선택방법 적용한 결과 수동 디지타이징 과정을 생략하고도 높은 분류정확도를 도출 할 수 있었으며 이와 같은 방법을 통해 영상처리에 필요한 시간과 비용을 절약하여 급속히 증가하고 있는 영상을 효율적으로 활용할 수 있게 될 것으로 기대된다.

관심영역수정 및 역광보정을 통한 이미지향상 구현 (Implementation of Image Enhancement by Region of Interest Modification and Backlight Compensation)

  • 성준모;이성신;이성욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.655-657
    • /
    • 2016
  • 우리는 빛의 정도에 따라 사진의 밝기와 채도, 대비를 보정하고 더 나아가 역광을 보정하는 기술을 구현하였다. 색감과 질감의 경우, 기존과는 다른 방법으로 질감과 색감을 추출했다. 역광보정은 자동이나 수동으로 할 수 있는데, 수동으로 역광보정을 적용하기 위해서는 먼저 관심영역을 지정해 주어야한다. 관심영역은 사진 속 원하는 부분의 윤곽선을 이어줌으로써 선택한다. 우리는 자석 올가미를 통하여 섬세한 선택을 가능하게 하였다. 기존 올가미 기능은 시작점과 끝점을 일치시켜 주어야 하는 단점이 있었으나 제안하는 올가미 기능은 시작점과 끝점을 일치시키지 않아도 관심영역을 선택할 수 있는 장점이 있다.

새로운 관심영역 추출 방법을 이용한 역광보정 (Backlight Compensation by Using a Novel Region of Interest Extraction Method)

  • 성준모;이성신;이성욱
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권6호
    • /
    • pp.321-328
    • /
    • 2017
  • 우리는 빛의 정도에 따라 이미지의 밝기와 채도, 대비를 보정하고 더 나아가 역광을 보정하는 기술을 구현하였다. 역광보정은 자동이나 수동으로 할 수 있는데, 수동으로 역광보정을 적용하기 위해서는 먼저 관심영역을 지정해 주어야 한다. 관심영역은 사진 속 원하는 사물의 윤곽선을 이어줌으로써 선택한다. 우리는 자석 올가미를 이용하여 사용자가 섬세한 선택을 가능하게 하였다. 기존 올가미 기능은 시작점과 끝점을 일치시켜 주어야 하는 단점이 있었으나 제안하는 올가미 기능은 시작점과 끝점을 일치시키지 않아도 관심영역을 선택할 수 있는 장점이 있다. 또한 사용자가 이진화 임계값과 질감추출을 위한 k-means 군집의 개수를 선택할 수 있도록 하여 다양한 역광보정 결과를 자동으로 얻을 수 있게 하였다.

관심영역 검출을 위한 상향식 현저함 모델 기반의 선택적 주의 집중 연구 (Detection of ROIs using the Bottom-Up Saliency Model for Selective Visual Attention)

  • 김종배
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.314-317
    • /
    • 2011
  • 본 논문은 상향식 현저함 모델을 이용하여 입력 영상으로부터 시각적 주의를 갖는 영역들을 자동으로 검출하는 방법을 제안한다. 제안한 방법에서는 인간의 시각 시스템과 같이 사전 지식 없이 시각정보의 공간적인 분포에 근거하여 장면을 해석하는 상향식 현저함 모델 방법을 입력 영상에 적용하여 관심 물체 영역을 검출하는 연구이다. 상향식 현저함 방법은 Treisman의 세부특징이론 연구에서 제시한 바와 같이 시각적 주의를 갖는 영역은 시각정보의 현격한 대비차이를 가지는 영역으로 집중되어 배경에서 관심영역을 구분할 수 있다. 입력 영상에서 현저함 모델을 통해 3차원 현저함 맵을 생성한다. 그리고 생성된 현저함 맵으로부터 실제 관심영역들을 검출하기 위해 제안한 방법에서는 적응적 임계치 방법을 적용하여 관심영역을 검출한다. 제안한 방법을 관심영역 분할에 적용한 결과, 영역 분할 정확도 및 정밀도가 약 88%와 89%로 제시되어 관심 영상분할 시스템에 적용이 가능함을 알 수 있다.

학습 알고리즘을 이용한 AF용 ROI 선택과 영역 안정화 방법 (Selection of ROI for the AF using by Learning Algorithm and Stabilization Method for the Region)

  • 한학용;장원우;하주영;허강인;강봉순
    • 융합신호처리학회논문지
    • /
    • 제10권4호
    • /
    • pp.233-238
    • /
    • 2009
  • 본 논문에서는 얼굴을 자동 초점(Auto-focus) 디지털 카메라의 관심영역(ROI : Region Of Interest)으로 이용하는 시스템에서 요구되는 검출 영역의 안정적인 선택을 위한 방법을 제안한다. 이 방법은 디지털 카메라와 모바일 카메라에 포함되는 ISP(Image Signal Processor)에서 실시간으로 처리되는 프로그레시브 입력 영상에서 얼굴 영역을 관심영역으로 간주하고 자동으로 초점을 맞추는 방법이다. 얼굴 영역 검출을 위하여 사용한 학습 알고리즘은 에이다부스트 알고리즘을 이용하였다. 학습에 포함되지 않은 기울어진 얼굴에 대한 검출방법과 검출 결과에 대한 후처리 방법, 관심영역이 흔들리지 않고 일정한 영역을 유지하도록 하기 위한 안정화 대책을 제안한다. 제안된 ROI 영역 안정화 알고리즘에 대한 성능을 평가하기 위하여 움직임이 있는 얼굴에 대하여 기준 궤적과의 차이를 보이고, 각 궤적의 회귀곡선과의 RMS 오차를 안정화 성능평가의 척도로 이용하였다.

  • PDF

성대 영상에서 에너지를 이용한 관심 영역 추출 (Region-of-Interest Detection using the Energy from Vocal Fold Image)

  • 김엄준;성미영
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권8호
    • /
    • pp.804-814
    • /
    • 2000
  • 본 논문에서는 비데오스트로보키모그래피(Videostrobokymography) 시스템에서 영상중의 관심 영역을 추출하는 효율적인 방법을 소개하고자 한다. 비데오스트로보키모그래피는 성대 운동의 불규칙적인 움직임을 판단하여 자동으로 진단 파라미터를 구하는 의료 영상 시스템이다. 본 논문에서는 세 가지의 단계를 거쳐서 관심 영역을 추출하고 있다. 첫 번째로 최소 에너지를 이용하여 관심 영역의 중심이 되는 부분을 찾는다. 관심 영역 내에 있는 특징 점을 추출한 후 두 번째 단계로 한 라인(line) 영역에 대해 가로축을 따라서 평균값에 의한 에지를 선택한다. 최종 단계에서는 이 특징 값을 합병 알고리즘(merge algorithm)의 임계값으로 사용하여 관심 영역을 추출한다. 제안하는 알고리즘을 19명의 성대 영상에 적용하여 분석한 결과 성대를 촬영한 95%의 영상에서 관심 영역을 추출할 수 있었다. 본 연구에서 제안하는 관심 영역 추출 방법은 계산 량이 적어 200${\times}$280 크기의 영상을 초당 약 40프레임이상 처리하여 관심 영역을 추출할 수 있어 매우 효율적이다.

  • PDF

AF를 위한 피부색 영역의 얼굴 특징을 이용한 Face Detection 알고리즘 및 하드웨어 구현 (Face Detection Algorithm and Hardware Implementation for Auto Focusing Using Face Features in Skin Regions)

  • 정효원;곽부동;하주영;한학용;강봉순
    • 한국정보통신학회논문지
    • /
    • 제13권12호
    • /
    • pp.2547-2554
    • /
    • 2009
  • 본 논문은 얼굴을 자동 초점(AF, Auto Focusing) 기능의 관심영역(ROI, Region of Interest)으로 이용하기 위한 얼굴 검출(Face Detection) 알고리즘 및 하드웨어 구현에 관한 것이다. 얼굴 검출을 위해 YCbCr 색 좌표계에서의 피부색 영역을 바탕으로 얼굴의 특징을 이용하였다. 얼굴에 해당하는 피부, 눈에 해당하는 에지, 그리고 입에 해당하는 음영의 픽셀수를 얼굴 특징으로 선택하였고, 얼굴 특징은 2,000개의 얼굴 샘플을 통하여 통계적으로 구하였다. 제안된 알고리즘은 하드웨어 설계 시, 하드웨어 자원의 효율성을 고려하여 영상의 중심에 가까운 두 명의 얼굴을 검출하게 하였다. 그리고 검출된 얼굴을 자동 초점의 관심 영역으로 이용하기 위하여 얼굴 영역을 사각형의 박스로 표시하였고, 영상에서 박스의 시작점과 끝점에 해당하는 위치를 출력하게 하였다. 하드웨어로 설계된 얼굴 검출 기능은 FPGA 보드와 모바일 폰 카메라 센서를 사용하여 검증하였다.

이미지 단어집과 관심영역 자동추출을 사용한 이미지 분류 (Image Classification Using Bag of Visual Words and Visual Saliency Model)

  • 장현웅;조수선
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권12호
    • /
    • pp.547-552
    • /
    • 2014
  • 플리커, 페이스북과 같은 대용량 소셜 미디어 공유 사이트의 발전으로 이미지 정보가 매우 빠르게 증가하고 있다. 이에 따라 소셜 이미지를 정확하게 검색하기 위한 다양한 연구가 활발히 진행되고 있다. 이미지 태그들의 의미적 연관성을 이용하여 태그기반의 이미지 검색의 정확도를 높이고자 하는 연구를 비롯하여 이미지 단어집(Bag of Visual Words)을 기반으로 웹 이미지를 분류하는 연구도 다양하게 진행되고 있다. 본 논문에서는 이미지에서 배경과 같은 중요도가 떨어지는 정보를 제거하여 중요부분을 찾는 GBVS(Graph Based Visual Saliency)모델을 기존 연구에 사용할 것을 제안한다. 제안하는 방법은 첫 번째, 이미지 태그들의 의미적 연관성을 이용해 1차 분류된 데이터베이스에 SIFT알고리즘을 사용하여 이미지 단어집(BoVW)을 만든다. 두 번째, 테스트할 이미지에 GBVS를 통해서 이미지의 관심영역을 선택하여 테스트한다. 의미연관성 태그와 SIFT기반의 이미지 단어집을 사용한 기존의 방법에 GBVS를 적용한 결과 더 높은 정확도를 보임을 확인하였다.

다중 카메라로 관심선수를 촬영한 동영상에서 베스트 뷰 추출방법 (A Best View Selection Method in Videos of Interested Player Captured by Multiple Cameras)

  • 홍호탁;엄기문;낭종호
    • 정보과학회 논문지
    • /
    • 제44권12호
    • /
    • pp.1319-1332
    • /
    • 2017
  • 최근 스포츠 중계에 동원되는 카메라 대수가 증가함에 따라 수많은 카메라 화면 중 순간적으로 최고의 화면을 고르는데 어려움이 있다. 지금까지 스포츠 경기를 촬영한 영상들에서 자동으로 최고의 화면을 선택하는 방법들이 연구되어 왔지만 배경이 고정된 영상들만을 고려해 배경이 움직이는 영상들을 고려하는 연구가 필요하다. 본 논문에서는 각 영상 별로 관심선수를 추적하여 획득한 영상 내 관심선수 영역을 대상으로 관심선수의 활동량, 얼굴 가시성, 다른 선수와의 겹침 정도, 이미지 블러 현상 정도를 매 프레임 마다 정량적으로 나타내어 정량화된 값을 기반으로 최고의 화면을 선택한다. 이렇게 선택된 베스트 뷰를 20명의 일반 사람들에게 베스트 뷰와 워스트 뷰를 선택하게 하여 사람들이 선택한 베스트 뷰, 워스트 뷰와 비교한 결과 베스트 뷰와 일치율이 54.5%로 낮았지만 반대로 워스트 뷰와 일치율이 9%로 확실히 사람들이 선호하지 않는 화면은 선택하지 않는 것을 알 수 있었다.

안전 운전 지원을 위한 도로 영상에서 시각 주의 영역 검출 (Detection of Visual Attended Regions in Road Images for Assisting Safety Driving)

  • 김종배
    • 전자공학회논문지SC
    • /
    • 제49권1호
    • /
    • pp.94-102
    • /
    • 2012
  • 최근 고령 사회에 들어섬에 따라 고령 운전자의 수가 증가하는 추세이다. 고령 운전자의 교통사고 대부분이 차량 운전자의 부주의로 인해 발생한다. 이러한 부주의들에는 노화에 따른 느린 몸의 움직임으로 차량 조작 미숙, 노안으로 인한 좁은 시야로 낮은 시각정보 검색 문제 그리고 낮은 대비감도로 인한 물체 식별 문제 등으로 기인한다. 본 연구에서는 고령 운전자의 안전 운전 지원을 위해 도로 영상에서 시각적 주의를 가져야 하는 관심물체 영역들을 실시간으로 자동 검출하는 방법을 제안한다. 제안한 방법은 입력 영상으로부터 선택적 시각 주의를 갖는 관심물체후보 영역들을 실시간으로 검출하기 위해 칼라, 기울기, 그리고 밝기 특징정보들의 대비 변화 정도를 3차원으로 표현한 현저함 맵(Saliency map)을 생성하고, 동시에 입력 영상으로부터 물체들의 경계선 획득을 위해 mean-shift 알고리즘을 적용하여 영상을 분할한다. 그리고 분할된 영역에 속한 현저함 픽셀의 유무에 따른 선택적 시각 주의 영역을 검출한다. 제안한 방법을 다양한 실외 환경 조건에서 실험한 결과, 도로 상의 다양한 물체에 빠른 검출율과 함께 비교적 복잡한 도로 환경에서도 강임함을 알 수 있다.