• Title/Summary/Keyword: 관심영역 자동선택

Search Result 26, Processing Time 0.043 seconds

Automatic selection method of ROI(region of interest) using land cover spatial data (토지피복 공간정보를 활용한 자동 훈련지역 선택 기법)

  • Cho, Ki-Hwan;Jeong, Jong-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.171-183
    • /
    • 2018
  • Despite the rapid expansion of satellite images supply, the application of imagery is often restricted due to unautomated image processing. This paper presents the automated process for the selection of training areas which are essential to conducting supervised image classification. The training areas were selected based on the prior and cover information. After the selection, the training data were used to classify land cover in an urban area with the latest image and the classification accuracy was valuated. The automatic selection of training area was processed with following steps, 1) to redraw inner areas of prior land cover polygon with negative buffer (-15m) 2) to select the polygons with proper size of area ($2,000{\sim}200,000m^2$) 3) to calculate the mean and standard deviation of reflectance and NDVI of the polygons 4) to select the polygons having characteristic mean value of each land cover type with minimum standard deviation. The supervised image classification was conducted using the automatically selected training data with Sentinel-2 images in 2017. The accuracy of land cover classification was 86.9% ($\hat{K}=0.81$). The result shows that the process of automatic selection is effective in image processing and able to contribute to solving the bottleneck in the application of imagery.

Implementation of Image Enhancement by Region of Interest Modification and Backlight Compensation (관심영역수정 및 역광보정을 통한 이미지향상 구현)

  • Seong, Joon Mo;Lee, Seong Shin;Lee, Songwook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.655-657
    • /
    • 2016
  • 우리는 빛의 정도에 따라 사진의 밝기와 채도, 대비를 보정하고 더 나아가 역광을 보정하는 기술을 구현하였다. 색감과 질감의 경우, 기존과는 다른 방법으로 질감과 색감을 추출했다. 역광보정은 자동이나 수동으로 할 수 있는데, 수동으로 역광보정을 적용하기 위해서는 먼저 관심영역을 지정해 주어야한다. 관심영역은 사진 속 원하는 부분의 윤곽선을 이어줌으로써 선택한다. 우리는 자석 올가미를 통하여 섬세한 선택을 가능하게 하였다. 기존 올가미 기능은 시작점과 끝점을 일치시켜 주어야 하는 단점이 있었으나 제안하는 올가미 기능은 시작점과 끝점을 일치시키지 않아도 관심영역을 선택할 수 있는 장점이 있다.

Backlight Compensation by Using a Novel Region of Interest Extraction Method (새로운 관심영역 추출 방법을 이용한 역광보정)

  • Seong, Joon Mo;Lee, Seong Shin;Lee, Songwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.6
    • /
    • pp.321-328
    • /
    • 2017
  • We have implemented a technique to correct the brightness, saturation, and contrast of an image according to the degree of light, and further compensate the backlight. Backlight compensation can be done automatically or manually. For manual backlight compensation, we have to select the region of interest (ROI). ROI can be selected by connecting the outline of the desired object. We make users select the region delicately with the new magnetic lasso tool. The previous lasso tool has a disadvantage that the start point and the end point must be connected. However, the proposed lasso tool has the advantage of selecting the region of interest without connecting the start point and the end point. We can automatically obtain various results of backlight compensation by adjusting the number of k-means clusters for texture extraction and the threshold value for binarization.

Detection of ROIs using the Bottom-Up Saliency Model for Selective Visual Attention (관심영역 검출을 위한 상향식 현저함 모델 기반의 선택적 주의 집중 연구)

  • Kim, Jong-Bae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.314-317
    • /
    • 2011
  • 본 논문은 상향식 현저함 모델을 이용하여 입력 영상으로부터 시각적 주의를 갖는 영역들을 자동으로 검출하는 방법을 제안한다. 제안한 방법에서는 인간의 시각 시스템과 같이 사전 지식 없이 시각정보의 공간적인 분포에 근거하여 장면을 해석하는 상향식 현저함 모델 방법을 입력 영상에 적용하여 관심 물체 영역을 검출하는 연구이다. 상향식 현저함 방법은 Treisman의 세부특징이론 연구에서 제시한 바와 같이 시각적 주의를 갖는 영역은 시각정보의 현격한 대비차이를 가지는 영역으로 집중되어 배경에서 관심영역을 구분할 수 있다. 입력 영상에서 현저함 모델을 통해 3차원 현저함 맵을 생성한다. 그리고 생성된 현저함 맵으로부터 실제 관심영역들을 검출하기 위해 제안한 방법에서는 적응적 임계치 방법을 적용하여 관심영역을 검출한다. 제안한 방법을 관심영역 분할에 적용한 결과, 영역 분할 정확도 및 정밀도가 약 88%와 89%로 제시되어 관심 영상분할 시스템에 적용이 가능함을 알 수 있다.

Selection of ROI for the AF using by Learning Algorithm and Stabilization Method for the Region (학습 알고리즘을 이용한 AF용 ROI 선택과 영역 안정화 방법)

  • Han, Hag-Yong;Jang, Won-Woo;Ha, Joo-Young;Hur, Kang-In;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.4
    • /
    • pp.233-238
    • /
    • 2009
  • In this paper, we propose the methods to select the stable region for the detect region which is required in the system used the face to the ROI in the auto-focus digital camera. this method regards the face region as the ROI in the progressive input frame and focusing the region in the mobile camera embeded ISP module automatically. The learning algorithm to detect the face is the Adaboost algorithm. we proposed the method to detect the slanted face not participate in the train process and postprocessing method for the results of detection, and then we proposed the stabilization method to sustain the region not shake for the region. we estimated the capability for the stabilization algorithm using the RMS between the trajectory and regression curve.

  • PDF

Region-of-Interest Detection using the Energy from Vocal Fold Image (성대 영상에서 에너지를 이용한 관심 영역 추출)

  • Kim, Eom-Jun;Sung, Mee-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.8
    • /
    • pp.804-814
    • /
    • 2000
  • In this paper, we propose an effective method to detect the regions of interests in the Videostrobokymography System. Videostrobokymography system is a medical image processing system for extracting automatically the diagnosis parameters from the irregular vibratory movements of the vocal fold. We detect the regions of interests through three steps. In the first step, we remove the noise in the input image and we find the minimum energy value in each frame. In the second step, we computed the edge by everage value for the one line. In the third step, the regions of interests can be extracted by using the Merge Algorithm which uses the variance of luminance as the feature points. We experimented this method for the vocal fold images of nineteen patients. In consequence, the regions of interests are detected in most vocal fold images. The method proposed in this study is efficient enough to extract the region of interests in the vocal fold images with the frame rate of 40 frames/second and the resolution of 200${\times}$280 pixels.

  • PDF

Face Detection Algorithm and Hardware Implementation for Auto Focusing Using Face Features in Skin Regions (AF를 위한 피부색 영역의 얼굴 특징을 이용한 Face Detection 알고리즘 및 하드웨어 구현)

  • Jeong, Hyo-Won;Kwak, Boo-Dong;Ha, Joo-Young;Han, Hag-Yong;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2547-2554
    • /
    • 2009
  • In this paper, we proposed a face detection algorithm and a hardware implementation method for ROI(Region Of Interest) of AF(Auto Focusing). We used face features in skin regions of YCbCr color space for face detection. The face features are the number of skin pixels in face regions, edge pixels in eye regions, and shadow pixels in lip regions. The each feature was statistically selected by 2,000 sample pictures of face. The proposed algorithm detects two faces that are closer center of the image for considering the effectiveness of hardware resource. The detected faces are displayed by rectangle for ROI of AF, and the rectangles are represented by positions in the image about starting point and ending point of the rectangles. The proposed face detection method was verified by using FPGA boards and mobile phone camera sensor.

Image Classification Using Bag of Visual Words and Visual Saliency Model (이미지 단어집과 관심영역 자동추출을 사용한 이미지 분류)

  • Jang, Hyunwoong;Cho, Soosun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.547-552
    • /
    • 2014
  • As social multimedia sites are getting popular such as Flickr and Facebook, the amount of image information has been increasing very fast. So there have been many studies for accurate social image retrieval. Some of them were web image classification using semantic relations of image tags and BoVW(Bag of Visual Words). In this paper, we propose a method to detect salient region in images using GBVS(Graph Based Visual Saliency) model which can eliminate less important region like a background. First, We construct BoVW based on SIFT algorithm from the database of the preliminary retrieved images with semantically related tags. Second, detect salient region in test images using GBVS model. The result of image classification showed higher accuracy than the previous research. Therefore we expect that our method can classify a variety of images more accurately.

A Best View Selection Method in Videos of Interested Player Captured by Multiple Cameras (다중 카메라로 관심선수를 촬영한 동영상에서 베스트 뷰 추출방법)

  • Hong, Hotak;Um, Gimun;Nang, Jongho
    • Journal of KIISE
    • /
    • v.44 no.12
    • /
    • pp.1319-1332
    • /
    • 2017
  • In recent years, the number of video cameras that are used to record and broadcast live sporting events has increased, and selecting the shots with the best view from multiple cameras has been an actively researched topic. Existing approaches have assumed that the background in video is fixed. However, this paper proposes a best view selection method for cases in which the background is not fixed. In our study, an athlete of interest was recorded in video during motion with multiple cameras. Then, each frame from all cameras is analyzed for establishing rules to select the best view. The frames were selected using our system and are compared with what human viewers have indicated as being the most desirable. For the evaluation, we asked each of 20 non-specialists to pick the best and worst views. The set of the best views that were selected the most coincided with 54.5% of the frame selection using our proposed method. On the other hand, the set of views most selected as worst through human selection coincided with 9% of best view shots selected using our method, demonstrating the efficacy of our proposed method.

Detection of Visual Attended Regions in Road Images for Assisting Safety Driving (안전 운전 지원을 위한 도로 영상에서 시각 주의 영역 검출)

  • Kim, Jong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.94-102
    • /
    • 2012
  • Recently entered into an aging socity as the number of elderly drivers is increasing. Traffic accidents of elderly drivers are caused by driver inattentions such as poor vehicle control due to aging, visual information retrieval problems caused by presbyopia, and objects identifying problems caused by low contrast sensitivity. In this paper, detection method of ROIs on the road is proposed. The proposed method creates the saliency map to detect the candidate ROIs from the input image. And, the input image is segmented to obtain the ROIs boundary. Finally, selective visual attention regions are detected according to the presence or absence of a segmented region with saliency pixels. Experimental results from a variety of outdoor environmental conditions, the proposed method presented a fast object detection and a high detection rate.