• 제목/요약/키워드: 관성좌표계

검색결과 40건 처리시간 0.026초

광학식 3차원 좌표측정장치를 이용한 관성항법센서와 기체의 정렬기법 (Alignment of Inertial Navigation Sensor and Aircraft Fuselage Using an optical 3D Coordinate Measuring Device)

  • 김정호;이대우
    • 한국항공우주학회지
    • /
    • 제47권1호
    • /
    • pp.41-48
    • /
    • 2019
  • 본 논문은 광학적인 방법을 통해 얻은 3차원 좌표들을 이용하여 항공기 동체와 관성항법센서를 정렬하는 방법에 대하여 다루고 있다. 기존에 가공되어 있는 마운트 홀의 제작 정확도를 신뢰하고 장착하던 관행에서 나아가 관성항법센서의 좌표계와 항공기 동체의 기준좌표계를 보다 정확하게 정렬하기 위한 방법에 대해 소개하고 있으며, 실현가능성을 검증하기 위해 실제 3차원 좌표측정장치의 오차 수준을 반영한 시뮬레이션을 통해 정렬 성능을 검증하였다. 또한 광학센서와 관성항법센서의 최적화 기법 기반 정렬 방법을 기술하였다.

좌표계의 회전과 코리올리 효과

  • 이형근
    • 제어로봇시스템학회지
    • /
    • 제16권1호
    • /
    • pp.51-55
    • /
    • 2010
  • 제어 및 로봇 응용에서 이동체의 위치, 속도, 그리고 자세 정보를 획득하는 기능은 매우 중요한 여할을 수행한다. 위치, 속도, 그리고 자세 정보는 통틀어 항법정리라 통칭되며 전파센서, 영상센서, 혹은 관성센서 등 다양한 센서들의 조합에 의하여 획득될 수 있다. 항법정보의 획득에 있어서 특히 관성센서는 다양한 센서들의 조합에 있어서 가장 중요한 역할을 수행하는데 이는 관성센서가 다른 센서들과는 달리 주변의 조명 환경, 전파환경, 그리고 고의적인 외란에 강인한 특성을 지니며, 이동체의 빠른 운동을 세밀하게 수치화하여 표현할 수 있기 때문이다. 본 고에서는 이와 같은 장점을 지닌 관성센서의 출력을 정확하게 다루기 위해 명확한 이해가 요구되는 코리올리 효과에 대하여 살펴보고자 한다. 코리홀리 효과는 이동체의 운동을 회전하는 좌표계에서 관측할 경우 발생하는 특이한 현상에 해당되며 관성센서를 다루기 위한 준비 과정에서 많은 입문자들이 어려움을 가지는 부분으로 이해된다.

감도해석법을 이용한 엔진 마운트계의 동특성 규명 및 개선 (Identification and Modification of Dynamic Characteristics of Engine Mount System using Sensitivity Analysis)

  • 오재응;최상렬;조준호;이정환;박호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1992년도 추계학술대회논문집; 반도아카데미, 20 Nov. 1992
    • /
    • pp.25-30
    • /
    • 1992
  • 최근 전자계산기를 이용한 진동해석 방법이 눈부시게 발달하여, 일반 구조물 이나 기계 구조물 등의 동특성을 설계 단계에서 정도 높게 예측하는 것이 가능하게 되었다. 그러나 종래의 구조해석은 주어진 시스템의 동특성을 위한 것으로 얻어진 동특성으로부터 질량, 관성제원 및 스프링상수값 등의 설계상 수값을 규명하는 연구는 미미한 실정이다. 이것에 대한 해결방법으로 크게 해석적인 방법과 실험적인 방법으로의 접근이 있어 왔다. 해석적인 방법으로 유한요소해석에서 얻은 모드좌표를 물리좌표로 변환하는 방법으로 Guyan의 정축소와 같은 절점축소를 행하는 방법이 고찰되었다. 실험적인 방법으로 가 진실험에서 얻은 전달함수나 모드파라미터로부터 [M], [K] 행렬을 결정하는 연구가 있었지만 어떤것도 질량, 스프링상수 등의 설계상수를 완전히 규명하 지는 못하였다. 또한, 설계 단계에서 필요한 질량, 관성제원 또는 스프링상수 등의 최적한 값이나, 원하는 시스템특성을 얻을 수 있는 설계상수의 적정한 폭을 구하는 연구는 설계자의 경험과 반복된 시행착오에 의존하는 실정이다. 감도해석은 이러한 문제점을 개선하는 수단으로 설계변수에 대한 동특성의 변화율을 구하는 것이다. 감도해석을 수행하는 것은 어느 설계변수를 수정하 는 것이 주어진 동특성에 부합되는 지를 알려주고, 어느 것을 수정하는 것이 원하는 방향의 동특성변화에 가장 효과적인지를 알려주는 것이다. 따라서 감 도해석을 이용하여 설계의 최적화 프로그램을 만들수 있고, 이것은 설계자가 요구하는 동특성을 목적함수로 하여 주어진 구조물을 최적화하는 설계상수 값을 얻을 수 있게 한다. 본 논문에서는 강체모델의 동특성으로부터 모델의 설계 상수를 규명하고, 동특성의 개선을 위하여 설계변수의 변경량을 물리좌 표계에서 얻는것을 목적으로 한다. 강체 마운트계의 관성제원 및 마운트강성 의 규명을 위하여 임으로 주어진 설계상수를 모델데이타로 하여 관성제원과 스프링 강성을 구하였다. 관성제원의 규명은 주어진 모델의 관성값을 모르는 것으로 하여 임의의 초기 관성값으로 감도해석에 의해 주어진 계의 관성값 을 물리 좌표계에서 규명하였다. 마운트 강성의 규명도 관성제원의 규명과 같은 방법으로 임의의 강성값으로 감도해석을 하여 강성값을 규명하였다. 또 한 감도해석에 의한 동특성 변경은 특정한 고유진동 수의 변경이 필요할 때, 고유진동수의 이동을 위한 관성제원의 변경 및 마운트 강성변경값을 예측할 수 있다. 본 연구수행의 기본적인 흐름도는 Fig.1.1과 같다. 위와 같은 작업 으로 엔진 마운트와 같은 강체 모델의 시스템 규명을 행하는 경우에 유한요 소해석 및 가진 실험으로 얻은 고유진동수의 정보 또는 원하는 고유진동수 의 특성을 기본으로 실제 설계에서 사용이 가능하도록 물리 좌표계에서 관 성 제원 및 스프링상수를 구할 수 있을 것이다.

  • PDF

반도체 센서의 확장칼만필터를 이용한 자세추정 (Extended Kalman Filtering for I.M.U. using MEMs Sensors)

  • 전용호
    • 한국전자통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.469-475
    • /
    • 2015
  • 본 논문은 반도체 센서를 이용하여 공간상 시스템의 자세를 정확히 측정할 수 있도록 확장 칼만 필터를 설계하는 방법에 관한 연구이다. 공간상 자세는 관성좌표계(고정 좌표계)로부터 몸체에 부착된 회전좌표계의 상호 관계로 표현한다. 자세를 표현하는데 있어서 간결한 방법인 쿼터니언을 상태변수로 이용하며, 속도 센서로부터 계측된 값을 입력으로 가정하고, 상태 변화를 추정하였다. 그리고 가속도 센서로부터 획득된 값을 관측 데이터로 하여 추정한 값과의 정합과정을 통해 최적의 추정치를 얻어낸다. 이때 추정의 정밀도를 높이기 위해 추정 주기를 센서특성에 맞춰 조절하도록 확장 칼만 필터를 설계하였다. 그 결과, 3축 속도 센서와 3축 가속도 센서를 이용하여 설계된 추정기의 RMS(: Root Mean Square) 추정오차가 시뮬레이션에서 약 1.7 [$^{\circ}$] 이하로 유지되었고, 실험에서 100 [ms] 의 주기로 상태추정을 함으로 추정기가 유용함을 입증하였다.

별 추적기의 성능향상을 위한 광행차 보정에 대한 연구

  • 용기력;김응현;이선호;오시환;최홍택;이승우
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.68-68
    • /
    • 2003
  • 본 논문은 별 추적기의 여러 가지의 성능변수 중에 광행차가 성능에 미치는 영향을 연구하였다. 일반적으로 광행차는 별 추적기의 저주파오차로 작용하며, 별 추적기 좌표계에서 최대 27" 정도의 성능을 감소시킨다. 지구가 태양 주위를 공전함으로써 야기되는 광행차는 약 21"이며, 줄리안 데이트를 통해서 보정이 가능하며, 관성 좌표계에서 지구 저궤도 위성이 궤도운동을 함으로 야기되는 광행차 오차는 약 6" 이며, 궤도정보를 통해서 보정이 가능하다. 이를 보정하기 위해서, 보정 알고리즘을 구현하여 다목적 실용위성 자세제어계 성능해석 소프트웨어를 통해서 검증을 하였다.

  • PDF

가상의 초기위치를 이용한 SDINS 폐루프 자체 정렬 알고리즘 (SDINS Closed Loop Self-Alignment Algorithm using Pseudo Initial Position)

  • 김태원
    • 한국항공우주학회지
    • /
    • 제45권6호
    • /
    • pp.463-472
    • /
    • 2017
  • 관성항법장치(Inertial Navigation System)는 항법 수행 전 동체 좌표계(body frame)와 항법 좌표계(navigation frame)사이의 좌표 변환 행렬(Direction Cosine Matrix: DCM)을 결정하여 초기자세를 구하는데 이 과정을 정렬(alignment)이라 한다. 정렬을 시작하기 위해서는 INS의 초기 위치 정보가 필요한데 해당 정보가 INS에 미리 입력되어 있지 않거나 당장에 초기위치를 모를 경우 이로 인해 INS에 전원이 인가된 후 정렬에 진입하기까지의 대기시간이 존재한다. 이러한 대기시간을 제거하기 위하여 본 논문에서는 INS 전원 인가 즉시 현재위치와 상이한 가상의 초기위치 값을 장입하여 스트랩다운 INS 정렬을 시작하고 추후에 정확한 위치를 INS에 입력하여 자세오차를 보상하는 정렬 알고리즘을 제시하였다. 항법 좌표계에서의 INS 센서 오차가 시간이 지남에 따라 자세오차에 미치는 영향성을 분석하여 가상의 초기위치 값 입력 시 발생하는 자세오차 만큼을 보상하는 폐루프 정렬 알고리즘의 성능을 검증하였다.

로터 시스템 회전운동의 정식화 및 해석 (Inelastic Transient Dynamic Analysis of Two- and Three-dimensional Stress Problems by Particular Integral Boundary Element Method)

  • 윤성호;임리민
    • 한국전산구조공학회논문집
    • /
    • 제21권5호
    • /
    • pp.475-482
    • /
    • 2008
  • 본 논문은 로터 시스템의 디스크 회전운동을 표현하는데 있어 운동방정식을 통합하는 과정에서 기존 연구자들이 채택한 오일러 각 사용법이 일관성이 없음을 지적하였다. 기존 연구자들은 오일러 각 순서가 달라서 속도와 운동에너지도 달리 산정하였음은 물론, 운동방정식은 오직 선형 시스템만 취급해 왔다 이러한 오일러 각 사용법의 단점을 극복하기 위하여 회전운동을 더욱 단순하게 매개화할 수 있는 4원법(quaternion)과 구 좌표계를 적용하여 비선형 시스템을 도출하였다. 이를 바탕으로 수치해석을 통하여 기존 방법과 비교하여 제안한 방법의 신뢰성과 우수성을 보였다.

보행자 관성 항법시스템에서의 센서 축 편향 보정 알고리즘 (A calibration algorism for the bias of sensor axis in pedestrian dead reckoning system)

  • 김윤수;박건구;조찬웅;김한빈;이채우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.493-495
    • /
    • 2015
  • PDR은 일반적으로 IMU센서로 부터의 가속도와 각속도를 측정하여 보행자의 위치를 추적하는 시스템이다. IMU센서로부터 측정된 가속도와 각속도 값은 센서를 기준으로 하기 때문에 보행자가 인지하는 고정 좌표계와는 차이가 있다. 이를 해결하기 위해 회전행렬을 사용하며 이후 계속해서 측정되는 각속도를 통해 회전행렬을 업데이트 한다. 업데이트된 회전행렬을 통해 좌표계를 환산하고 환산된 좌표계의 가속도 값으로부터 보행자는 고정좌표계 기준으로 위치 추적이 가능하다. 하지만 회전행렬을 업데이트 하는 과정에서 센서의 세 축이 이상적으로 수직이 아니라면 업데이트 과정에서 각속도의 오차가 누적되고 이는 좌표계를 환산에 영향을 끼쳐 위치 및 속도 추적 정확성을 낮춘다. 물리적인 Bias가 PDR 시스템에 누적오차를 발생시킨다. 이에 제안하는 센서 축 편향 보정 알고리즘은 IMU 센서의 물리적 축 오차를 보정해주어 더 정확한 위치 추적을 가능하게 한다. 또한 Matlab을 통해 데이터를 분석하고 알고리즘의 필요성을 보인다.

관성항법시스템을 이용한 3D 포인팅 디바이스의 설계 및 구현 (Design and Implementation of a 3D Pointing Device using Inertial Navigation System)

  • 김홍섭;임거수;한만형;이금석
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권5호
    • /
    • pp.83-92
    • /
    • 2007
  • 본 논문에서는 2차원 포인팅 장치의 한계를 극복하기 위하여 3차원 공간에서 주위환경에 관계없이 위치를 인지하고 좌표를 얻어낼 수 있는 관성항법시스템을 이용한 3차원 포인팅 기기의 설계 및 구현방식을 제안한다. 관성항법시스템은 각속도계(gyroscope)와 가속도계(accelerometer)의 데이터를 바탕으로 좌표를 계산하는 기법으로, 가속도계에서 발생하는 오차는 칼만 필터를 이용하여 데이터를 보정한다. 3차원 포인팅 장치의 프로토 타입 개발을 위해 무선 3차원 공간인식 마우스를 설계 및 구현하였으며, 디스플레이 장치에 표시를 위하여 RFIC를 이용하여 측정한 좌표 데이터를 수신 모듈로 전송하고 수신 모듈은 USB 드라이버를 통하여 호스트로 전달하였다. 본 논문은 관성항법시스템과 칼만 필터의 이론적인 지식을 바탕으로 3차원 포인팅 장치를 설계하고 프로토 타입을 구현하고 성능 평가를 통하여 3차원 공간에서 사용자의 움직임을 추출할 수 있는 입력 기기로서의 유용성을 검증하였으며 향후 유비쿼터스 컴퓨팅의 다양한 응용 장치로서의 가능성을 제시하였다.

  • PDF

스트랩다운 관성항법장치의 오차해석 (Error analysis for a strapdown inertial navigation system)

  • 심덕선;박찬국;송유섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.286-289
    • /
    • 1986
  • 항법(navigation)은 기준좌표계에 대한 항체(vehicle)의 위치나 속도를 알아내기 위한 것으로 이를 위한 시스템이 관성항법장치(inertial navigation system-INS)이며 항법기능을 수행하기 위하여 항체에 놓여진 쎈서의 관성성질을 이용한다. INS는 specific force와 관성 각속도의 측정에서 얻은 데이타를 처리함으로 그 기능을 수행한다. 스트랩다운 INS(SINS)는 관성항법장치의 한 종류로 analytic INS라고도 하는데 기준좌표축을 유지하기 위하여 안정테이블을 사용하지 않고 쎈서들을 항체에 직접 부착시켜 초기상태와 현재상태와의 사이에 상대적인 회전방향을 해석적으로 계산한다. INS의 성능은 수많은 오차원(error source)의 함수로 주어지며 이 오차원 중에는 주위환경에 의한 것도 있고 INS 구성에 사용된 기구(instruments)와 관련된 것도 있다. INS 를 해석하는 목적은 항법의 정확도를 알아보는데 있으며 또한 각각의 오차원의 값을 추정하는 것도 부가적인 목적이 된다. 이러한 오차의 추정치는 사양(specification)을 모르는 부품의 성능을 식별하는데 사용될 수 있다. 따라서 INS를 해석함으로 INS를 구성하는 어떤 부품에 대한 성능이 어느정도 개선을 필요로 하는가 알 수 있다. 본 논문에서는 SINS의 오차원을 크게 고도계의 불확실성, 중력의 편향과 이상, 가속도계의 불확실성, 자이로의 불확실성의 네 그룹으로 나누어 상호분산해석(covariance analysis)방법으로 각 오차원이 시스템에 미치는 영향을 알아보았다.

  • PDF