• Title/Summary/Keyword: 관류열량

Search Result 9, Processing Time 0.029 seconds

Heat Recovery System from Chamber of Agricual Products Dryer (농산물건조기의 배풍열 재이용 기술에 관한 연구)

  • Paek, Y.;Kim, Y.J.;Kang, G.C.;Ryou, Y.S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.07a
    • /
    • pp.241-246
    • /
    • 2002
  • 본 연구는 농산물을 건조할 때 배풍구로 버려지는 열을 회수하여 건조열원으로 재이용할 수 있는 배풍열 회수장치를 개발하여 연료절감 및 열회수장치의 성능을 분석한 연구 결과 다음과 같은 결론을 얻었다. 가. 농산물건조기의 열수지를 분석한 결과 투입열량을 100%로 하였을 경우, 배기열은 13.2%, 배풍역량 77.7%, 관류열량은 9.1%로 나타났다. 나. 고추를 건조시 배풍구입구온도가 55-6$0^{\circ}C$일 때 배풍구 출구온도 41-43$^{\circ}C$, 일때 흡입구 입구온도는 25-28$^{\circ}C$, 흡입구 출구온도는 41-43$^{\circ}C$로 나타나 건조실로 41-43$^{\circ}C$의 높은 온도를 투입할 수 있었다. 다. 배풍열 량이 단위 시간당 4700kca1에서 6000kca1로 증가할 때, 흡입 열량은 2200kca1에서 3000kca1로 나타났다. 라. 고추의 초기함수율이 80%에서 15%까지 떨어지는데 관행건조는 약 27시간이 경과했으며, 배풍연회수건조를 할 경우는 약 24시간이 경과했으며 그 결과 배풍열 회수건조가 약 3시간정도 소요시간이 단축되었음을 알 수 있었음. 마. 배풍열 회수장치를 사용하여 농산물건조기 투입량의 47%, 배풍열량의 64%의 열량을 회수할 수 있었다. 바. 배풍열 회수 농산물건조기 성능시험 결과 고추 100kg 건조시 연료소모량은 43%, 건조 소요비용은 21% 감소시킬 수 있었다.

  • PDF

Evaluation of Heating Efficiency and Analysis of Heating Loads in Greenhouses with Heating Systems of Electric Power Midnight or Hot Air (심야전력 전기히터, 온풍난방을 채용한 단동 하우스의 열부하 해석 및 난방효율 평가)

  • 최동호;허종철;임종환;서효덕
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1999.04a
    • /
    • pp.5-8
    • /
    • 1999
  • 동일부지내에 설치된 각 단동하우스에 무가온 상태 및 심야전력 전기히터, 온풍난방기를 각각 설치하여, 동절기 시설원예용 하우스의 온열환경, 난방방식별 에너지 소비특성, 난방효율에 대해서 검토하였다. 동절기 하우스의 벽체, 지붕을 통해 유출되는 관류열량을 정량적으로 계산하므로서, 하우스의 단열계획과 효율적 난방방식의 선정 및 난방에너지 절약을 유도할 수 있는 기초데이터를 제시하고자 한다. (중략)

  • PDF

Variation of the Overall Heat Transfer Coefficient of Plastic Greenhouse Covering Material (플라스틱온실 피복재의 관류열전달계수 변화)

  • Lee, Hyun-Woo;Diop, Souleymane;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.72-77
    • /
    • 2011
  • The objective of the present study is to provide the basic data necessary for estimating the overall heat transfer coefficient of commercial plastic greenhouse. The heat flow through covering of greenhouses was measured and the variation of overall heat transfer coefficient was analyzed. Because the inside-outside temperature difference of greenhouse to indicate the stabilized overall heat transfer coefficient was different depending on the number of covering layers, the actual overall heat transfer coefficient should be decided in range of inside-outside temperature difference to make the coefficient constant for each covering method. The variation trend of the overall heat transfer coefficient according to the inside-outside temperature difference corresponded with the existing research results, but the specific values of temperature difference to present the stabilized overall heat transfer coefficient were different each other. The increase rates of overall heat transfer coefficient with wind speed were quite dissimilar among several research results and the quantity of heat loss through covering according to the wind speed in the double layers covered or curtained greenhouse was less than that in the single layer covered greenhouse. Because there was large variations among the values of overall heat transfer coefficient for the polyethylene film greenhouses, it was required to establish the standardized environmental condition for experiment measuring heat flow through covering in commercial greenhouse.

Analysis of Heat Transfer Characteristics in Response to Water Flow Rate and Temperature in Greenhouses with Water Curtain System (수막하우스의 유량 및 수온에 따른 열전달 특성 분석)

  • Kim, Hyung-Kweon;Kim, Seoung-Hee;Kwon, Jin-Kyeong
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.270-276
    • /
    • 2016
  • This study analysed overall heat transfer coefficient, heat transmission, and rate of indoor air heating provided by water curtain in order to determine the heat transfer characteristic of double-layered greenhouse equipped with a water curtain system. The air temperatures between the inner and outer layers were determined by the water flow rate and inlet water temperature. Higher water flow rate and inlet water temperature resulted in the increased overall heat transfer coefficient between indoor greenhouse air and water curtain. However, it was found that with higher levels of water flow rate and inlet water temperature, indoor overall heat transfer coefficient was converged about $10W{\cdot}m^{-2}{\cdot}^oC^{-1}$. The low correlation of overall heat transfer coefficient between water curtain and air within double layers was likely because the combination of greenhouse shape, wind speed and outdoor air temperature as well as water curtain affected the heat transfer characteristics. As water flow rate and inlet water temperature increased, the heat transferred into the greenhouse by water curtain also tend to rise. However it was demonstrated that the rate of heat transmission from water curtain into greenhouse with water curtain system using underground water was accounted for 22% to 28% for total heat lost by water curtain. The results of this study which quantify heat transfer coefficient and net heat transfer from water curtain may be a good reference for economical design of water curtain system.

A Study on the Evaluation of Thermal Performance of Aluminium Alloy Window Frame considering 2D Steady-state Heat Transfer applied to Educadtional Facility (2차원 정상전열해석을 통한 교육시설의 알루미늄 창호 열성능 평가에 관한 연구)

  • Kang, Jung-Hun;Kwak, Young-Kuhn;Noh, Seung-Uk;Park, Dae-Ho;Lee, Ju-Ho;Hong, Wan-Pyo;Hwang, In-Kyu;Park, Tong-So
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.122-125
    • /
    • 2011
  • 본 연구에서는 기존 교육시설에 설치된 알루미늄 합금 창의 2차원 정상상태 전열해석을 통한 열성능 평가를 수행하였다. 교육시설의 주요 창호재료로 적용된 알루미늄은 열전도율이 $175 \;Kcal/m^2h^{\circ}C$ 정도로 플라스틱 소재와 비교하여 매우 불리하여 기존 시설에 설치된 알루미늄 창호는 열손실의 주요인으로 지적되고 있다. 본 연구에서는 이러한 점에 착안하여 충남 서산지방에 위치한 대학건물의 알루미늄 합금 창호의 열성능 평가에 관한 연구를 수행하여 다음과 같은 해석 결과를 도출하였다. (1) 2차원 정상상태 전열해석을 위한 경계조건은 국토해양부고시 건축물의 에너지절약설계기준의 [별표 6] 중부지방 냉난방장치의 용량계산을 위한 설계 외기온 기준과 [별표 7]의 실내온도 기준을 적용하여 여름철 실내 $27^{\circ}C$, 실외 $31.3^{\circ}C$, 겨울철 실내 $21.0^{\circ}C$, 실외 $-9.6^{\circ}C$ 로 설정하고 해석한 결과 열관류율은 알루미늄 합금 창호는 $U=9.631 \;W/m^2K$, 복층유리 $U= 2.382 \;W/m^2K$로 여름철과 겨울철 동일한 해석결과치가 산출되었다. (2) 산출된 열관류율 해석결과를 건축물의 에너지절약설계기준 [별표 3] 열교차단재가 적용되지 않은 금속제 창의 단열성능 중 일반복층창 성능기준인 $4.0 \;W/m^2K$와 비교할 때, 알루미늄 창틀을 통하여 225%의 열량이 손실됨을 보여 주고 있다.

  • PDF

Thermal Energy Storage in Phase Change Material - by Means of Finned Thermosyphon - (상변화 물질을 이용한 에너지의 저장에 관한 연구 - 핀이 부착된 열싸이폰의 이용에 관하여 -)

  • Kim, Kwon-Jin;Yoo, Jai-Suk;Kim, Ki-Hyun
    • Solar Energy
    • /
    • v.11 no.1
    • /
    • pp.69-77
    • /
    • 1991
  • A two-phase closed thermosyphon with circular fins was used as the heat transfer device for storing the thermal energy in paraffin wax. Experiments were carried out for 4, 6 and 8 fins and for various initial temperatures of the wax and power inputs. Heat transfer characteristics along the heat flow path were investigated as well as the overall performance of the system. Some of the important results are as follows:(1) The thermosyphon heat transfer coefficient and the overall heat transfer coefficient increased with the number of fins, whereas the heat transfer coefficient between the fin and the wax decreased; (2) Facilitation of heat transfer by the fins seemed to alleviate the dry-out phenomenon that had been reported to occur in case of bare thermosyphon; and (3) The horizontal fins had adverse effect of subduing a full scale convection in the wax, and the increase of the number of fins delayed the onset of local convection between the fins.

  • PDF

Evaluation of Heating Performance and Analysis of Heating Loads in Single Span Plastic Greenhouses with an Electrical or Hot-Air Heating (전기히터식 난방, 온풍난방시스템을 채용한 단동 플라스틱 하우스의 열부하 해석 및 난방성능 평가)

  • 허종철;임종환;서효덕;최동호
    • Journal of Bio-Environment Control
    • /
    • v.8 no.2
    • /
    • pp.136-146
    • /
    • 1999
  • A series of experiments were carried out in winter to investigate the indoor thermal environment in greenhouses with different kinds of heating systems, and characterize the energy consumption, heat transport and thermal energy efficiency of each system. By the Quantitative calculation of heat losses which transmit through the covers of greenhouse, the fundamental data of energy-saving of the particular heating system were obtained. And from the analysis of air temperature differences between indoor and outside, it was possible to select more effective energy-saving and comfortable heating system in greenhouses. The electric heater was more stable in thermal environment and cheaper in cost, since it could be used during the surplus time of electric power from 10:00 p.M. to 8:00 A.M. But the low air temperature in greenhouses besides these times resulted in a chilling problem of the crops. The heating system by hot air had the advantage to show nearly uniform temperature difference by the height above the ground. But the system had the disadvantage to require more energy consumption than the electric heating system.

  • PDF

Analysis of Density Wave Oscillation in Boiler Furnace Wall Tubes with Parallel Channel Modeling (평행관 모델링을 통한 보일러 화로벽관 내 밀도파 불안정의 해석)

  • Kim, Jinil;Choi, Sangmin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.187-196
    • /
    • 2013
  • A numerical model was developed to predict the density wave oscillation (DWO) in the furnace wall tubes of a fossil-fired once-through boiler. The transient flow fields in the tubes were obtained using a 1D finite volume method in the time domain. A header model was also implemented to simulate the parallel tube connection of the wall tubes. The inlet and outlet mass flow variation in one of the parallel tubes was examined after a heat perturbation to find the DWO. After successful verification with experimental results reported in literature, the developed model was applied to the wall tubes of a 700-MW boiler furnace. In contrast to the simulation of Takitani's experiment, in which the unstable power thresholds tended to rise in the reduced bypass channel flow, no remarkable changes were observed in the power thresholds in the parallel channel modeling of the wall tubes of the boiler furnace.

Experimental Study on the Infiltration Loss in Plastic Greenhouses Equipped with Thermal Curtains (보온커튼을 설치한 플라스틱 온실의 틈새환기전열량 실측조사)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.100-105
    • /
    • 2015
  • The calculation method of infiltration loss in greenhouse has different ideas in each design standard, so there is a big difference in each method according to the size of greenhouses, it is necessary to establish a more accurate method that can be applied to the domestic. In order to provide basic data for the formulation of the calculation method of greenhouse heating load, we measured the infiltration rates using the tracer gas method in plastic greenhouses equipped with various thermal curtains. And then the calculation methods of infiltration loss in greenhouses were reviewed. Infiltration rates of the multi-span and single-span greenhouses were measured in the range of $0.042{\sim}0.245h^{-1}$ and $0.056{\sim}0.336h^{-1}$ respectively, single-span greenhouses appeared to be slightly larger. Infiltration rate of the greenhouse has been shown to significantly decrease depending on the number of thermal curtain layers without separation of single-span and multi-span. As the temperature differences between indoor and outdoor increase, the infiltration rates tended to increase. In the range of low wind speed during the experiments, changes of infiltration rate according to the outdoor wind speed could not find a consistent trend. Infiltration rates for the greenhouse heating design need to present the values at the appropriate temperature difference between indoor and outdoor. The change in the infiltration rate according to the wind speed does not need to be considered because the maximum heating load is calculated at a low wind speed range. However the correction factors to increase slightly the maximum heating load including the overall heat transfer coefficient should be applied at the strong wind regions. After reviewing the calculation method of infiltration loss, a method of using the infiltration heat transfer coefficient and the greenhouse covering area was found to have a problem, a method of using the infiltration rate and the greenhouse volume was determined to be reasonable.