• Title/Summary/Keyword: 관계정보

Search Result 17,077, Processing Time 0.049 seconds

A Study on the Valley Shapes with Different Parent Rocks in Yeongnam Area (영남지역(嶺南地域) 주요(主要) 모암별(母岩別) 곡간(谷間)의 특성(特性)에 관한 연구(硏究))

  • Yun, Eul-Soo;Jung, Yeun-Tae;Kim, Min-Tae;Jung, Ki-Yuol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.139-144
    • /
    • 2000
  • This study was conducted to obtain the basic information to increase the practical use of soil survey data through the subdividing of valley shapes with soil sequences due to different parent rocks, and to study the relationship between the valley shapes and parent rock. The various rocks such as sedimentary(gray shale and sand stone) and igneous rocks(granite, granite gneiss and andesite porphyry) which are the major parent rocks in Yeongnam area were investigated. The characteristics of valleys formed and the kinds of soils derived from different rocks were analysed by using aerial photographs and topographical maps scaled 1:5,000. The rill density in igneous rock area was as high as 40. But the rill bifurcation ratio of first order stream was higher in the sedimentary than the igneous rocks except granite area. The mean slope of valleys in igneous areas was about 8%, which was higher than that of the sedimentary areas. The variability of valley width in the complexly metamorphosed rock, such as granite gneiss, and andesite porphyry, was greater than in sedimentary and in granite rocks. Based on the variability of valley widths and valley slopes, it was possible to classify the valleys into two types. The "Uterus-shaped valleys" had wide variability of valley width and were located in the areas of granite gneiss and andesite porphry rocks. while the "Roots-shaped valleys" had narrow variability of valley width and were located in the sedimentary areas. "Uterus-shaped valleys" were typified by having land forms of mountain foot slopes and alluvial fans, and the soil drainage sequences also had complexities. So that, we concluded that the variability of valley width and valley slopes was associated with kinds of parent rocks and metamorphism which influences soil sequence and characteristics.

  • PDF

Study on Vegetation Analysis for Indicators Development of Agro-ecosystem Habitat Quality (농업생태계의 서식지 질 지표 개발을 위한 식생분석)

  • Park, Kwang-Lai;Kang, Bang-Hun;Choi, Jae-Woong;Kim, Chang-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.1040-1046
    • /
    • 2010
  • This research is composed of a series of survey of existing plants species by classifying biotope type of agro-ecosystem of Guksoo village area of Yangpyeong County, to collect and analyze basic data of vegetation analysis for indicators development of agro-ecosystem habitat quality. From the observation area, we found total 141 kinds of tracheophytes (53 Family 114 Genus 124 Species 16 Variety 1 Breed) and they are 3.36% of total Korean tracheophytes (4,191 kinds). Among those 141 tracheophytes, there are 23 kinds of naturalized plants (11 Family 20 Genus 20 Species 2 Variety) and they are 8.61% of total Korean naturalized plants (267 kinds). Among those 141 tracheophytes, they include 0.71% of pteridophyte, 0.71% of gymnosperm, 98.58% of angiosperm. So, most of them are angiosperm. When we classify them according to plant life form characteristics, dormant/diapause type plants include 45 species (31.91%) of annual plant (Th), 19 species (13.48%) of Th (w), 17species (12.06%) of hemicryptophyte (H). Regarding propagation type, as for the Radicoid form, there are 99 species (70.21%) of crumb structure plant, 13 species (9.22%) of $R_4$, 12 species (8.51%) of $R_{2.3}$ are the crumb structure does not make any connection on the ground or under ground. As for the Disseminule form of propagation type, there are 62 species (43.97%) of Gravity dispersal type $D_4$), 23 species (16.31%) of Wind dispersal type ($D_1$), 21 species (14.89%) of $D_{1.4}$. According to this survey of plant distribution rate by plant life form characteristics, we may acquire many knowledge about species composition of sociability, cluster's reaction against environmental elements, space usage and possible species competition in community. It may be very useful basic data for habitat preservation to keep and promote biological diversity.

Association of Cognitive Dysfunction with Thyroid Autoantibody (갑상선 자가항체와 인지기능 저하의 연관성)

  • Han, Dong Kyun;Cheon, Jin Sook;Choi, Young Sik;Kim, Ho Chan;Oh, Byoung Hoon
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.24 no.2
    • /
    • pp.227-235
    • /
    • 2016
  • Objectives : The aims of this study were to know the frequency of cognitive dysfunction among patients with autoimmune thyroid disorders, and to reveal influencing factors on it, especially to clarify association with autoimmune thyroid antibodies. Methods : From sixty-five female patients with autoimmune thyroid disorders, demographic data were obtained by structured interview. Their cognitive funtions were measured using the MMSE-K and the MoCA-K tests. Depression was evaluated by the K-HDRS. Results : 1) Among patients with autoimmune thyroid disorders, 7.69% of them were below 24 on the MMSE-K, while 10.77% were below 22 on the MoCA-K. The frequency of cognitive deficit was not significantly different according to having positivity to antimicrosomal antibodies or not. 2) The antimicrosomal antibody-positive patients had significantly higher antithyroglobulin antibody titers, antimicrosomal antibody titers, and TSH concentration, while had significantly lower free T4 levels(p<0.05, respectively). 3) The total scores of the MMSE-K and the MoCA-K had significant correlation with age, marital status, antithyroglobulin antibody titers and K-HDRS(p<0.05, respectively). 4) The regression analysis revealed that variables such as age, education, autoimmune thyroid antibodies, thyroid function and depression did not influence on cognitive function of patients with autoimmune thyroid disorders. Conclusions : Our results could not support that cognitive function of patients with autoimmune thyroid disorders had correlation with autoimmune thyroid antibodies.

Development of Neuropsychological Model for Spatial Ability and Application to Light & Shadow Problem Solving Process (공간능력에 대한 신경과학적 모델 개발 및 빛과 그림자 문제 해결 과정에의 적용)

  • Shin, Jung-Yun;Yang, Il-Ho;Park, Sang-woo
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.5
    • /
    • pp.371-390
    • /
    • 2021
  • The purpose of this study is to develop a neuropsychological model for the spatial ability factor and to divide the brain active area involved in the light & shadow problem solving process into the domain-general ability and the domain-specific ability based on the neuropsychological model. Twenty-four male college students participated in the study to measure the synchronized eye movement and electroencephalograms (EEG) while they performed the spatial ability test and the light & shadow tasks. Neuropsychological model for the spatial ability factor and light & shadow problem solving process was developed by integrating the measurements of the participants' eye movements, brain activity areas, and the interview findings regarding their thoughts and strategies. The results of this study are as follows; first, the spatial visualization and mental rotation factors mainly required activation of the parietal lobe, and the spatial orientation factor required activation of the frontal lobe. Second, in the light & shadow problem solving process, participants use both their spatial ability as a domain-general thought, and the application of scientific principles as a domain-specific thought. The brain activity patterns resulting from a participants' inferring the shadow by parallel light source and inferring the shadow when the direction of the light changed were similar to the neuropsychological model for the spatial visualization factor. The brain activity pattern from inferring an object from its shadow by light from multiple directions was similar to the neuropsychological model for the spatial orientation factor. The brain activity pattern from inferring a shadow with a point source of light was similar to the neuropsychological model for the spatial visualization factor. In addition, when solving the light & shadow tasks, the brain's middle temporal gyrus, precentral gyrus, inferior frontal gyrus, middle frontal gyrus were additionally activated, which are responsible for deductive reasoning, working memory, and planning for action.

RPC Correction of KOMPSAT-3A Satellite Image through Automatic Matching Point Extraction Using Unmanned AerialVehicle Imagery (무인항공기 영상 활용 자동 정합점 추출을 통한 KOMPSAT-3A 위성영상의 RPC 보정)

  • Park, Jueon;Kim, Taeheon;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1135-1147
    • /
    • 2021
  • In order to geometrically correct high-resolution satellite imagery, the sensor modeling process that restores the geometric relationship between the satellite sensor and the ground surface at the image acquisition time is required. In general, high-resolution satellites provide RPC (Rational Polynomial Coefficient) information, but the vendor-provided RPC includes geometric distortion caused by the position and orientation of the satellite sensor. GCP (Ground Control Point) is generally used to correct the RPC errors. The representative method of acquiring GCP is field survey to obtain accurate ground coordinates. However, it is difficult to find the GCP in the satellite image due to the quality of the image, land cover change, relief displacement, etc. By using image maps acquired from various sensors as reference data, it is possible to automate the collection of GCP through the image matching algorithm. In this study, the RPC of KOMPSAT-3A satellite image was corrected through the extracted matching point using the UAV (Unmanned Aerial Vehichle) imagery. We propose a pre-porocessing method for the extraction of matching points between the UAV imagery and KOMPSAT-3A satellite image. To this end, the characteristics of matching points extracted by independently applying the SURF (Speeded-Up Robust Features) and the phase correlation, which are representative feature-based matching method and area-based matching method, respectively, were compared. The RPC adjustment parameters were calculated using the matching points extracted through each algorithm. In order to verify the performance and usability of the proposed method, it was compared with the GCP-based RPC correction result. The GCP-based method showed an improvement of correction accuracy by 2.14 pixels for the sample and 5.43 pixelsfor the line compared to the vendor-provided RPC. In the proposed method using SURF and phase correlation methods, the accuracy of sample was improved by 0.83 pixels and 1.49 pixels, and that of line wasimproved by 4.81 pixels and 5.19 pixels, respectively, compared to the vendor-provided RPC. Through the experimental results, the proposed method using the UAV imagery presented the possibility as an alternative to the GCP-based method for the RPC correction.

Study on Volume Measurement of Cerebral Infarct using SVD and the Bayesian Algorithm (SVD와 Bayesian 알고리즘을 이용한 뇌경색 부피 측정에 관한 연구)

  • Kim, Do-Hun;Lee, Hyo-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.591-602
    • /
    • 2021
  • Acute ischemic stroke(AIS) should be diagnosed within a few hours of onset of cerebral infarction symptoms using diagnostic radiology. In this study, we evaluated the clinical usefulness of SVD and the Bayesian algorithm to measure the volume of cerebral infarction using computed tomography perfusion(CTP) imaging and magnetic resonance diffusion-weighted imaging(MR DWI). We retrospectively included 50 patients (male : female = 33 : 17) who visited the emergency department with symptoms of AIS from September 2017 to September 2020. The cerebral infarct volume measured by SVD and the Bayesian algorithm was analyzed using the Wilcoxon signed rank test and expressed as a median value and an interquartile range of 25 - 75 %. The core volume measured by SVD and the Bayesian algorithm using was CTP imaging was 18.07 (7.76 - 33.98) cc and 47.3 (23.76 - 79.11) cc, respectively, while the penumbra volume was 140.24 (117.8 - 176.89) cc and 105.05 (72.52 - 141.98) cc, respectively. The mismatch ratio was 7.56 % (4.36 - 15.26 %) and 2.08 % (1.68 - 2.77 %) for SVD and the Bayesian algorithm, respectively, and all the measured values had statistically significant differences (p < 0.05). Spearman's correlation analysis showed that the correlation coefficient of the cerebral infarct volume measured by the Bayesian algorithm using CTP imaging and MR DWI was higher than that of the cerebral infarct volume measured by SVD using CTP imaging and MR DWI (r = 0.915 vs. r = 0.763 ; p < 0.01). Furthermore, the results of the Bland Altman plot analysis demonstrated that the slope of the scatter plot of the cerebral infarct volume measured by the Bayesian algorithm using CTP imaging and MR DWI was more steady than that of the cerebral infarct volume measured by SVD using CTP imaging and MR DWI (y = -0.065 vs. y = -0.749), indicating that the Bayesian algorithm was more reliable than SVD. In conclusion, the Bayesian algorithm is more accurate than SVD in measuring cerebral infarct volume. Therefore, it can be useful in clinical utility.

Effect of Lead Content on Atomic Structures of Pb-bearing Sodium Silicate Glasses: A View from 29Si NMR Spectroscopy (납 함량에 따른 비정질 Pb-Na 규산염의 원자 구조에 대한 고상 핵자기 공명 분광분석 연구)

  • Lee, Seoyoung;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.157-167
    • /
    • 2021
  • Lead (Pb) is one of the key trace elements, exhibiting a peculiar partitioning behavior into silicate melts in contact with minerals. Partitioning behaviors of Pb between silicate mineral and melt have been known to depend on melt composition and thus, the atomic structures of corresponding silicate liquids. Despite the importance, detailed structural studies of Pb-bearing silicate melts are still lacking due to experimental difficulties. Here, we explored the effect of lead content on the atomic structures, particularly the evolution of silicate networks in Pb-bearing sodium metasilicate ([(PbO)x(Na2O)1-x]·SiO2) glasses as a model system for trace metal bearing natural silicate melts, using 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy. As the PbO content increases, the 29Si peak widths increase, and the maximum peak positions shift from -76.2, -77.8, -80.3, -81.5, -84.6, to -87.7 ppm with increasing PbO contents of 0, 0.25, 0.5, 0.67, 0.86, and 1, respectively. The 29Si MAS NMR spectra for the glasses were simulated with Gaussian functions for Qn species (SiO4 tetrahedra with n BOs) for providing quantitative resolution. The simulation results reveal the evolution of each Qn species with varying PbO content. Na-endmember Na2SiO3 glass consists of predominant Q2 species together with equal proportions of Q1 and Q3. As Pb replaces Na, the fraction of Q2 species tends to decrease, while those for Q1 and Q3 species increase indicating an increase in disproportionation among Qn species. Simulation results on the 29Si NMR spectrum showed increases in structural disorder and chemical disorder as evidenced by an increase in disproportionation factor with an increase in average cation field strengths of the network modifying cations. Changes in the topological and configurational disorder of the model silicate melt by Pb imply an intrinsic origin of macroscopic properties such as element partitioning behavior.

The Needs Assessment of Middle School Students for Practical Reasoning Home Economics Classes in the Distance Learning Environment (원격학습 환경에서 가정교과 실천적 추론 과정에 대한 중학생의 요구도 조사연구)

  • Choi, Seong-Youn
    • Journal of Korean Home Economics Education Association
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 2021
  • The purpose of this study was to investigate the needs of middle school students for the practical reasoning in a distance learning environment, to verify the needs differences based on the learner's personal characteristics, student-teacher interaction, and student-student interaction, and to investigate the relationships among student-teacher interaction, voluntary participation of students, and the students' perception of the extent to which practical reasoning is implemented in distance learning. For this purpose, 1,842 middle school students from seven schools in Gyeonggi, Daejeon, Chungbuk, and Sejong areas were surveyed online to investigate the importance of the practical reasoning questions and the how much practical reasoning is implemented in current distance learning. Among them, 1,095 responses were used for final analysis and descriptive statistics, independent sample t-test, one-way ANOVA, and path analysis were conducted. As a result of the study, first, middle school students acknowledged that the practical reasoning was important with the importance average 3.76. Based on the locus for focus model, the priorities of the needs in home economics class were examined, and the values and importance of the problem, and the ramification of the solution were considered to be of high priority. Second, characteristics of middle school students, student-teacher interaction and student-student interaction were found to have positive influence on needs for practical reasoning, while no difference were found by gender or voluntary participation in distance learning. Third, the voluntary participation of students and the student-teacher interaction in distance learning had a positive (+) significant effect on perceived implementation of practical reasoning, yet negative (-) significant effect on needs for practical reasoning.

Study on the Current Status of Smart Garden (스마트가든의 인식경향에 관한 연구)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.51-60
    • /
    • 2021
  • Modern society is becoming more informed and intelligent with the development of digital technology, in which humans, objects, and networks relate with each other. In accordance with the changing times, a garden system has emerged that makes it easy to supply the ideal temperature, humidity, sunlight, and moisture conditions to grow plants. Therefore, this study attempted to grasp the concept, perception, and trends of smart gardens, a recent concept. To achieve the purpose of this study, previous studies and text mining were used, and the results are as follows. First, the core characteristics of smart gardens are new gardens in which IoT technology and gardening techniques are fused in indoor and outdoor spaces due to technological developments and changes in people's lifestyles. As technology advances and the importance of the environment increases, smart gardens are becoming a reality due to the need for living spaces where humans and nature can co-exist. With the advent of smart gardens, it will be possible to contribute to gardens' vitalization to deal with changes in garden-related industries and people's lifestyles. Second, in current research related to smart gardens and users' experiences, the technical aspects of smart gardens are the most interesting. People value smart garden functions and technical aspects that enable a safe, comfortable, and convenient life, and subjective uses are emerging depending on individual tastes and the comfort with digital devices. Third, looking at the usage behavior of smart gardens, they are mainly used in indoor spaces, with edible plants are being grown. Due to the growing importance of the environment and concerns about climate change and a possible food crisis, the tendency is to prefer the cultivation of plants related to food, but the expansion of garden functions can satisfying users' needs with various technologies that allow for the growing of flowers. In addition, as users feel the shapes of smart gardens are new and sophisticated, it can be seen that design is an essential factor that helps to satisfy users. Currently, smart gardens are developing in terms of technology. However, the main components of the smart garden are the combination of humans, nature, and technology rather than focusing on growing plants conveniently by simply connecting potted plants and smart devices. It strengthens connectivity with various city services and smart homes. Smart gardens interact with the landscape of the architect's ideas rather than reproducing nature through science and technology. Therefore, it is necessary to have a design that considers the functions of the garden and the needs of users. In addition, by providing citizens indoor and urban parks and public facilities, it is possible to share the functions of communication and gardening among generations targeting those who do not enjoy 'smart' services due to age and bridge the digital device and information gap. Smart gardens have potential as a new landscaping space.

Analysis of Co-registration Performance According to Geometric Processing Level of KOMPSAT-3/3A Reference Image (KOMPSAT-3/3A 기준영상의 기하품질에 따른 상호좌표등록 결과 분석)

  • Yun, Yerin;Kim, Taeheon;Oh, Jaehong;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.221-232
    • /
    • 2021
  • This study analyzed co-registration results according to the geometric processing level of reference image, which are Level 1R and Level 1G provided from KOMPSAT-3 and KOMPSAT-3A images. We performed co-registration using each Level 1R and Level 1G image as a reference image, and Level 1R image as a sensed image. For constructing the experimental dataset, seven Level 1R and 1G images of KOMPSAT-3 and KOMPSAT-3A acquired from Daejeon, South Korea, were used. To coarsely align the geometric position of the two images, SURF (Speeded-Up Robust Feature) and PC (Phase Correlation) methods were combined and then repeatedly applied to the overlapping region of the images. Then, we extracted tie-points using the SURF method from coarsely aligned images and performed fine co-registration through affine transformation and piecewise Linear transformation, respectively, constructed with the tie-points. As a result of the experiment, when Level 1G image was used as a reference image, a relatively large number of tie-points were extracted than Level 1R image. Also, in the case where the reference image is Level 1G image, the root mean square error of co-registration was 5 pixels less than the case of Level 1R image on average. We have shown from the experimental results that the co-registration performance can be affected by the geometric processing level related to the initial geometric relationship between the two images. Moreover, we confirmed that the better geometric quality of the reference image achieved the more stable co-registration performance.