현재 트위터에서 제공되는 친구추천 시스템은 영향력이 높은 사용자를 우선적으로 추천해준다. 하지만 사용자정보의 유사성이 높은 다른 사용자는 추천되지 않는 단점을 가지고 있다. 사용자들은 정보의 유사성이 높은 사용자 추천을 원하기 때문에 이러한 단점을 극복하기 위하여 본 논문에서는 사용자정보의 유사성을 기반으로 팔로어 추천 시스템을 구현하였다. 본 논문에서 사용된 데이터는 SNAP(Stanford Network Analysis Platform)에서 제공하는 데이터로, 팔로어의 수가 10,000명이상인 트위터의 사용자정보와 노드간 연결 데이터로 구성된다. 이 데이터를 트레이닝 데이터로 활용하여 팔로어간의 관계를 분류해줄 수 있는 분류자를 생성하고, 10-Fold Cross Validation을 활용하여, 분류자의 정확도를 판단한다. 두 트위터의 정보가 주어지면 그들 사이에 친구 관계, 팔로우 관계, 비연결 관계를 추천한다.
문헌에 존재하는 핵심개체 간의 관계를 자동으로 추출할 때 다양한 형태의 문서 분석 결과를 활용할 수 있다. 본 논문에서 는 기존에 개발되어 비교적 높은 성능을 보여준 합성곱 구문 트리 커널의 구절 구조 유사성 정보와 두 개체 사이의 유의미한 연관관계를 표현해주는 술어-논항 구조 패턴의 유사성 정보를 동시에 활용하는 혼합 커널을 제안한다. 구문적 구조를 이용하는 기존의 합성곱 구문 트리 커널에 술어와 논항 간의 의미적 구조를 활용하는 술어-논항 구조 패턴 유사도 커널을 결합하여 상호보완적인 혼합 커널을 구성하였고, 다양한 테스트컬렉션 기반의 실험을 통하여 개발된 커널의 성능을 측정하였다. 실험결과 구절 구조 정보를 이용하는 합성곱 구문 트리 커널만을 단독으로 사용했을 때보다 술어-논항 구조의 패턴 정보를 결합한 혼합 커널을 사용했을 때에 더 좋은 성능을 보이는 것을 확인할 수 있었다. 또한 기존의 시스템보다 우수한 성능을 보이는 것도 함께 확인할 수 있었다.
하천 내에서 하상변동은 치수나 생태계에 직간접적인 영향을 끼치는 것으로 알려져 있다. 하상변동의 예측을 위한 여러 가지 모델들이 존재하지만 하상변동의 양상을 직관적으로 파악하기에는 어려움이 있다. 최근 수행된 연구 결과에 따르면 하천의 수리 기하학적 형상이 부유사 농도와 유량과의 관계와 관련이 있는 것으로 밝혀졌다(Kim et al., 2018). 본 연구에서는 수리기하(Hydraulic Geometry) 이론을 이용하여 하천의 형상에 따른 유사거동과의 상관관계를 통해서 하상의 장기적 변동성을 직관적으로 유추할 수 있는 기법을 제시하고자 한다. 이를 위해 본 연구에서는 수리기하 이론에서의 수심과 폭을 나타내는 인자들을 이용하여 하천의 형상을 넓고 얕은 하천, 좁고 깊은 하천, 중간 정도의 하천으로 분류하였으며 흐름조건을 정상류와 부정류조건으로 분류하였다. 또한 하상경사와 하상재료의 입경 분포를 고려하여 자연하천에서 존재할 수 있는 다양한 하천형상에 대해 수치모의를 진행하였다. 기존의 Manning 공식에 수심, 유속만 고려한 것이 아닌 조도계수까지 고려하여 수리기하 이론을 접목시킴으로서 유속과 수심의 수리기하적 인자로 계산된 하상전단력의 수리기하적 인자가 수치모의를 통해 구한 값과 거의 일치하는 것을 확인하였다. 하천의 형상이 넓고 얕을수록 수리기하 관계로 표현한 하상전단력 인자가 작은 값을 나타냈으며 수리기하 관계로 표현한 부유사농도인자와 하상전단력 인자가 비슷한 양상을 띄는 것이 확인되었다. 이를 통해 하천이 기하학적 형상으로부터 하상의 변동성을 유추할 수 있었다. 실제 하천에 대한 검증은 금강 수계에 있는 미호천과 갑천을 대상으로 수행하였다. 수리기하적으로 표현하였을때 갑천은 미호천에 비해 넓고 얕은 하천에 속하는데 현재까지 관측된 자료를 이용하여 두 하천의 하상변동량을 비교해본 결과 갑천이 미호천에 비해 변동량이 적었으며 이는 위의 내용과 일치한 결과를 나타냈다.
천연기념물로 지정된 14개체의 느티나무의 유연관계 및 개체간의 다양성을 RAPD 마커를 이용하여 조사하였다. 일반적으로 각 개체간의 유사성의 정도는 낮았고 강원도의 두 개체(KWH 와 KWS)간에서 78%로 가장 높은 유사성을 보였다. Neighbour-joining tree에서 보여진 유연관계는 강원도와 전남의 일부 개체를 제외하고는 지리적 분포와 일치하지 않았다. 이는 생물학적 요인이라기보다는 이 종의 인위적인 이동에 의한 결과로 사료된다. 또한 개체간의 유전적 polymorphism의 정도는 매우 높아 polymorphic band수의 퍼센트는 77.8%에서 100%였다. 이는 각 개체가 장기간 격리 분화된 조상형에서 유래되었던 결과로 추측되었다.
부유사 수리실험에서 부유사의 농도를 측정하는 것은 불확실성이 매우 크다. Einstein(1950)은 유사의 pickup function 결정에서 이러한 불확실성 때문에 유사입자의 거동을 발생시키는 양력의 확률을 적용하기도 하였다. 일반적으로 부유사의 측정은 부유사 채집기를 통해 수행하지만, 시간적으로 비효율 적이며, 채집 시 채집기의 부피로 인한 난류 발생으로 채집 후 흐름 변화가 발생할 수 있다. 수리실험의 규모라면 이 문제는 더욱 부각될 수 있다. 연속적인 부유사의 농도 측정을 위해 이러한 점은 개선되어야 하는 문제이다. 본 연구에서는 유사 실험의 이러한 단점을 극복하고자 image processing 기법을 적용하였다. Image processing은 부유사의 농도가 증가할수록 탁도가 증가하는 특성을 이용하여, 부유사 농도를 추정하는 방법이다. 이 과정에서 RGB(Red-Green-Blue)로 색을 표시하는 방식에서 image를 변환하여 gray scale로 전환해야 하며, 파(wave)의 전파에 의한 image 결과의 변형은 없다고 가정하였다. Gray scale과 탁도와의 관계를 도출하기 위해 하상에 유사를 포설하고, 단파(surge)를 발생 시켰다. 실험은 길이 12.0m, 폭 0.8m, 높이 0.75m의 개수로에서 수행하였으며, 수로 상류에 sluice형 gate를 급격하게 개방하는 것으로 단파를 재현하였다. 탁도 측정을 위해 유사 채집기를 이용하였으며, 상기에서 제시한 흐름 교란문제로, 1지점에서 1개의 시간동안만 채집을 수행하였으며, image의 촬영을 병행하였다. 또한 data의 정확도를 높이기 위해 3번의 반복실험을 수행하였다. 실험결과 gray scale과 탁도와는 일정한 관계가 나타났으며, 이를 토대로 gray scale-SSC(suspended sediment concentration)와의 관계를 도출하였다. Bayesian 분석을 이용하여 image processing의 보정(확률적 보정)을 추가적으로 수행하였다. 최종적으로 실측한 값과 image processing을 통한 값을 1:1 curve를 통해 비교하였으며, 약 9%의 평균 오차가 발생하여, image processing과 bayesian 적용을 통한 부유사 농도 측정은 신뢰할 만한 결과를 도출하는 것으로 판단된다.
최근 소셜 네트워크 서비스 사용자의 폭발적인 증가 추세와 더불어 사용자 기반의 정보 공유 패러다임이 확산됨에 따라 효과적인 정보 공유를 위한 검색 방법 및 정보 분류의 필요성이 대두되고 있다. 소셜 네트워크 서비스는 관계도 탐색, 유사한 관심사의 사람들과 정보 공유, 추천시스템 등의 주요 서비스를 사용자 기반으로 구축하는 방향으로 연구가 진행되고 있으나 낮은 정보의 신뢰성으로 인해 지능적인 검색 및 정보 분류에 한계가 있었다. 본 논문에서는 대표적인 소셜 네트워크 서비스인 Facebook 을 기반으로, 낮은 정보의 신뢰성을 높이고 사용자의 소셜 검색 만족도를 높일 수 있는 사용자 그룹 분류 기법을 제안한다. 이를 위해 Facebook 사용자의 메타데이터를 수집하고 관계로 맺어진 사용자들간의 친밀도를 메타데이터 기반으로 계산하며 유사한 관심 정보에 따라 분류하고 효과적으로 사용자들을 그룹화한다. 마지막으로 실험을 통해 관계로 이루어진 사용자 친밀도와 그룹 분류가 효과적으로 수행되었음을 보인다.
현재 자연 하천의 유사농도의 측정에 있어서 실제 측정은 기상 조건에 영향을 받으며, 기계적 한계로 인해 하천바닥에 인접한 소류사 구간의 유사농도 측정값은 부유사 구간의 유사농도 측정값 보다 신뢰도가 낮다. 그리하여, 하천의 바닥농도는 이론식을 통해 산정되어왔으나, 기존 유사농도 계산 공식들의 바닥농도 산정값은 실측값에 비해 신뢰도가 낮고 서로 다른 공식 간의 차이는 여러 조건에 따라 천차만별이다. 따라서 하천의 바닥농도를 산정하기 위해 보다 신뢰성이 높은 공식이 요구되고 있다. 본 연구는 하천의 유사농도에 정보엔트로피이론을 적용하여 유사농도분포와 평균유사농도의 결정방법을 제시하고 평균유사농도와 바닥농도의 관계를 통해 바닥농도를 산정하는 방법을 제시하였다. 유사농도 분포의 확률은 제약조건하에 계산된 최대 엔트로피에 의해 일정한 확률분포를 나타내게 되고, 이러한 관계에 근거하여 유사농도분포, 평균유사농도 그리고 바닥유사농도 간의 관계를 유도하고 측정 표본을 통해 바닥 유사농도를 산정할 수 있다. 본 연구의 이론 검증을 위해 과거 실험의 유사농도 측정값을 사용하여 유도된 유사농도분포와 평균유사농도 공식을 적용하였으며, 유도된 두 공식의 관계를 이용하여 대표 농도변수(EN : Equilibrium N )를 도출하였다. 대표 농도변수를 통해 산정한 점 농도는 실측값과 결정계수가 평균적으로 R2=0.924의 높은 신뢰도를 보였다. 이를 통하여, 실제 하천의 부유사 구간과 소류사 구간의 유사농도의 전체 경향을 보다 쉽게 파악하고 평균유사농도와 바닥농도의 관계를 이용하여, 신뢰도가 확보된 바닥농도를 손쉽게 산정할 수 있다.
퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 일반적으로, 정보 granules는 근접성, 유사성 또는 기능성 등에 인하여 서로 결합되는 요소(특히, 수치 데이터)의 실체이다. 본 논문에서는 비선형 시스템의 퍼지모델을 위해 정보 granules에 의한 퍼지 관계 기반 퍼지 추론 시스템을 최적 설계한다. 제안된 퍼지 모델은 정보 데이터의 특성을 살리기 위해 HCtl 클러스터링 방법에 의한 중심값을 이용하여 모든 입력변수가 상호 관계한 전반부/후반부 구조 및 파라미터 동정을 시행한다. 두 가지 형태의 퍼지 추론 방법은 간략 추론과 선형추론에 의해 수행되고 삼각형 멤버쉽 함수를 사용한다. 구축된 정보 granule 기반 퍼지 모델은 유전자 알고리즘을 이용하여 전반부 파라미터를 최적으로 동정한다. 그리고 학습 및 테스트 데이터의 성능 결과의 상호균형을 얻기 위한 하중값을 가진 성능지수를 사용하여 근사화와 예측성능의 향상을 꾀하며, 기존 문헌과의 성능비교를 통해 제안된 퍼지 모델을 평가한다.
본 연구는 2006년 전국 4대 권역, 6개 지점에 대한 유사량 측정성과에 대한 분석을 실시하였다. 6개 지점에 대해 살펴보면 한강권역은 적성(임진강수계) 및 여주 지점, 낙동강 권역은 왜관 및 낙동 지점, 금강 권역은 공주 지점, 영산강 권역은 구례(섬진강수계) 지점이다. 이들 지점에 대해 유사량 측정 실시하였고, 그 결과를 바탕으로 현장에 적합한 유사량 측정 기준, 부유사 및 하상토 입경 분포 곡선 분석, 부유사량 산정, 향후 개선사항에 대해 정리하였다. 유사량 분석 결과는 다음과 같다. 전반적으로 측선별 농도의 편차는 크지 않는 것으로 나타났으며, 6개지점의 모두 유량 및 유사량 관계를 기존의 단순 지수함수로 표현하기에는 측정성과의 분산이 너무 큰 것으로 나타났다. 이는 기존 보고서에도 알려진 바와 같이 수위 상승시와 하강시의 유사량 특성이 너무 상이하기 때문이다. 향후 정밀한 측정 및 분석으로 유량 및 유사량 관계를 적절히 표현하는 방식이 필요하다고 판단된다. 그리고, 향후 전문인력에 의한 정밀 유사량 관측과 장기관측을 통해 보다 신뢰성 있는 유사량 특성을 분석할 수 있을 것이며, 홍수 방재를 위한 기반을 마련할 수 있을 것이다.
"소셜 네트워크(Social Network)와 검색(Search)의 만남"은 현재 인터넷 상에서 매우 의미 있는 두 영역의 결합이다. 이와 같은 두 영역의 결합을 통해 소셜 네트워크 내에서 친구들의 생각이나 관심사 및 활동을 검색하고 공유함으로써 검색의 효율성과 적합성을 높이기 위한 연구들이 활발히 수행되고 있다. 본 논문에서는 일반적인 소셜 관계 랭크(SRR : Social Relation Rank) 및 토픽이 반영된 소셜 관계 랭크(TS_SRR : Topic Sensitive_Social Relation Rank) 알고리즘을 제안한다. SRR은 소셜 네트워크 내에 존재하는 웹 사용자들의 내재적인 특성 및 검색 성향 등에 대한 관련성(또는 유사정도)을 수치로 산정한 '소셜 관계 지수(SRV : Social Relation Value)'에 랭킹(Ranking)을 부여한 것을 의미한다. 제안하는 알고리즘의 검색 적용 가능성을 검증하기 위해 첫째, 웹 사용자간 직접 또는 간접적인 연결로 구성된 소셜네트워크를 구성 한다. 둘째, 웹 사용자들의 속성에 내재된 정보를 이용하여 토픽별 SRV를 산정한 후 랭킹을 부여하고, 토픽별 변화되는 랭킹에 따라 소셜 네트워크를 재구성 한다. 마지막으로 (TS_)SRR과 웹 사용자들의 검색 패턴(Search Pattern)을 비교 실험 한다. 실험 결과 (TS_)SRR이 높은 웹 사용자 간에는 검색 패턴 또한 유사함을 확인 하였다. 결론적으로 (TS_)SRR 알고리즘을 기반으로 관심분야에 연관성이 높은, 즉 상위에 랭크 된 웹 사용자들을 검색하여 검색 패턴을 공유 또는 상속받는 다면 개인화 검색(Personalized Search) 및 소셜 검색(Social Search)의 효율성과 신뢰성 향상에 기여 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.