• Title/Summary/Keyword: 과학.공학 실천

Search Result 48, Processing Time 0.027 seconds

Fracture Behavior of Pressure Tube Materials Based on Fractography (금속재료의 재료시험법 교과내용 개선을 위한 Fractography 신개념 소개 및 도입에 대한 연구)

  • Oh, Dong-Joon
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.2 no.1
    • /
    • pp.126-134
    • /
    • 2010
  • Material Testing Method subject of Metal Materials, which is one of curriculum of engineering major high school, is not properly updated even though both science and technology are advancing rapidly. Especially, the need of fractographic technique, which can analyze the fracture surface with the advanced testing equipment and technique, is increasing. The importance and the analyzing method of Fractography are proved by the characteristic analysis of pressure tube fracture surface of HWPR. In the future, in order to increase the professional knowledge and their pride of engineering major high school student, these advanced subject should be included in the new crriculum of engineering major high school. This activity to involve the advanced subject should be carried out voluntary by the first line teacher before the responsible body.

  • PDF

Design and Control of a Basic Circuit System for STEAM Education (STEAM 교육을 위한 기초 회로 시스템 설계와 제어 방법)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.9 no.2
    • /
    • pp.99-106
    • /
    • 2017
  • The most important thing in STEAM education is to enhance students' interest and understanding of science and technology. In this paper, we propose basic circuit system design and control method applicable to STEAM fusion education. The circuit system design practice using the breadboard is designated as an essential curriculum in the corresponding department at the high school and college level in the domestic curriculum. However, there is a lack of STEAM convergence implementation examples that can easily understand circuit system design and control methods. Therefore, we proposed and tested a method to implement and control a media art type circuit system.

Curriculum of Basic Data Science Practices for Non-majors (비전공자 대상 기초 데이터과학 실습 커리큘럼)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.12 no.2
    • /
    • pp.265-273
    • /
    • 2020
  • In this paper, to design a basic data science practice curriculum as a liberal arts subject for non-majors, we proposed an educational method using an Excel(spreadsheet) data analysis tool. Tools for data collection, data processing, and data analysis include Excel, R, Python, and Structured Query Language (SQL). When it comes to practicing data science, R, Python and SQL need to understand programming languages and data structures together. On the other hand, the Excel tool is a data analysis tool familiar to the general public, and it does not have the burden of learning a programming language. And if you practice basic data science practice with Excel, you have the advantage of being able to concentrate on acquiring data science content. In this paper, a basic data science practice curriculum for one semester and weekly Excel practice contents were proposed. And, to demonstrate the substance of the educational content, examples of Linear Regression Analysis were presented using Excel data analysis tools.

The Relationship between Orientations toward Scientific Inquiry Learning and Coping Strategies for Anomalous Situations in Elementary Students: A Comparison between General and Science-Gifted Students (초등 일반 학생과 과학영재 학생의 과학 탐구 학습 지향과 불일치 상황에 대한 대처 전략의 관계 비교)

  • Jiyoung Yoon;Hunsik Kang
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.2
    • /
    • pp.155-166
    • /
    • 2024
  • This study investigated and compared orientations toward scientific inquiry learning among general and science-gifted elementary students. It also investigated and compared the relationship between their orientations toward scientific inquiry learning and their coping strategies for anomalous situations. To realize this, 61 general elementary students and 53 science-gifted elementary students in Seoul were selected, and questionnaires were administered to investigate their orientations toward scientific inquiry learning and coping strategies for anomalous situations. In addition, semi-structured in-depth interviews were conducted individually with some of the general and science-gifted students. The results showed that among orientations toward scientific inquiry learning, regardless of grade level, the general students were most likely to possess 'concept understanding' and second most likely to exhibit 'scientific practice'. On the other hand, the science-gifted students demonstrated the highest frequency of 'scientific practice', with 'concept understanding' and 'complexity' also being relatively common. 'Activity driven' was found only among some of the general students and 'engineering practice' was found only among some of the science-gifted students. 'Process skills' were not found. No clear relationships between orientations toward scientific inquiry learning and coping strategies for anomalous situations were found. However, some differences in the choice of coping strategies for anomalous situations between the general and science-gifted students were discovered, even when they had the same orientations toward scientific inquiry learning. The educational implications of these findings were discussed.

Teaching differential equations based on pseudo-STEM (Pseudo-STEM에 기초한 미분방정식 교육)

  • Ha, Jun-Hong;Shim, Jae-Dong
    • Journal of Practical Engineering Education
    • /
    • v.5 no.2
    • /
    • pp.177-183
    • /
    • 2013
  • In this paper we investigate the history of the education based on STEM which is one of the topics of teaching method of Mathematics and Science oriented to the student, Hand-on education be applying partly to college education and the case of the education of the subject "Mathematics and Science for Engineering" of Japan's college. The educational method based on STEM make the student to recognize by themselves the necessity of the mathematics in the study of the technological and engineering problem, and furthermore draw a conclusion which is the proper method to change from passive to positive the study attitude for the mathematics. But it is more or less unreasonable to apply directly to college education with not physical fusion but chemical fusion of S (science), T (technology), E (engineering) and M (mathematics). Therefore we make themselves to find T and E considered at graduation works. We propose Pseudo-STEM teaching method linking this recognition obtained through self-activity to the mathematics subject.

Exploring Pre-Service Earth Science Teachers' Understandings of Computational Thinking (지구과학 예비교사들의 컴퓨팅 사고에 대한 인식 탐색)

  • Young Shin Park;Ki Rak Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.260-276
    • /
    • 2024
  • The purpose of this study is to explore whether pre-service teachers majoring in earth science improve their perception of computational thinking through STEAM classes focused on engineering-based wave power plants. The STEAM class involved designing the most efficient wave power plant model. The survey on computational thinking practices, developed from previous research, was administered to 15 Earth science pre-service teachers to gauge their understanding of computational thinking. Each group developed an efficient wave power plant model based on the scientific principal of turbine operation using waves. The activities included problem recognition (problem solving), coding (coding and programming), creating a wave power plant model using a 3D printer (design and create model), and evaluating the output to correct errors (debugging). The pre-service teachers showed a high level of recognition of computational thinking practices, particularly in "logical thinking," with the top five practices out of 14 averaging five points each. However, participants lacked a clear understanding of certain computational thinking practices such as abstraction, problem decomposition, and using bid data, with their comprehension of these decreasing after the STEAM lesson. Although there was a significant reduction in the misconception that computational thinking is "playing online games" (from 4.06 to 0.86), some participants still equated it with "thinking like a computer" and "using a computer to do calculations". The study found slight improvements in "problem solving" (3.73 to 4.33), "pattern recognition" (3.53 to 3.66), and "best tool selection" (4.26 to 4.66). To enhance computational thinking skills, a practice-oriented curriculum should be offered. Additional STEAM classes on diverse topics could lead to a significant improvement in computational thinking practices. Therefore, establishing an educational curriculum for multisituational learning is essential.

The preliminary study of developing computational thinking practice analysis tool and its implementation (컴퓨팅 사고 실천 분석도구 개발 및 이의 활용에 대한 기초연구)

  • Park, Young-Shin;Hwang, Jin-Kyung
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.10 no.2
    • /
    • pp.140-160
    • /
    • 2017
  • The purpose of this study was to develop computational thinking (CT) analysis tool that can be used to analyze CT practices; first, by defining what CT practices are, and then, by identifying which components of CT are reflected in STEAM classes. Exploring various kinds of CT practices, which can be identified while applying the proposed CT analysis tool for exemplary STEAM classes, is another goal of this study. Firstly, to answer the question of "What is CT in science education" and thereby to develop the proposed CT practice analysis tool, three types of published documents about CT definition as the main data in this study have been considered. In the first "analysis tool development" part of this study, the following five elements have been identified as the main components of CT analysis tool as follows; (1) connecting open problems with computing, (2) using tools or computers to develop computing artifact, (3) abstraction process, (4) analyzing and evaluating computing process and artifact, and (5) communicating and cooperating. Based on the understandings that there is a consistent flow among the five components due to their interactions, a flow chart of CT practice has also been developed. In the second part of this study, which is an implementation study, the proposed CT practice analysis tool has been applied in one exemplary STEAM program. To select the candidate STEAM program, four selection criteria have been identified. Then, the proposed CT practice analysis tool has been applied for the selected STEAM program to determine the degree of CT practice reflected in the program and furthermore, to suggest a way of improving the proposed CT analysis tool if it shows some weak points. Through the findings of this study, we suggest that the actual definition of computational thinking will be helpful to converge Technology and Engineering to STEAM education and a strong complement to reinforce STEAM education.

Social Dimensions of Bio-technology: Focusing on HGP's Shaping Process (생물공학의 사회적 차원들: HGP의 형성과정을 중심으로)

  • Kim Dong-Kwang
    • Journal of Science and Technology Studies
    • /
    • v.1 no.1 s.1
    • /
    • pp.105-122
    • /
    • 2001
  • The purpose of this study is to understand how a teacher's teaching can be changed while he or she teaches the same contents in different classes. The qualitative research method was used in this study. Data were collected from classroom observations, several in-depth interviews, and stimulated-recall interviews after each class. All the data were transcribed and analyzed interpretively, and then, the results of the analysis were checked by each participating teacher. The results are as follows: First, changes appeared in each class in terms of the teaching items, tools, sequence, and time, even though the same teacher taught the same contents. It showed that the teacher's teaching practice changed immediately and intuitively in class. Second, teachers tried to implement "exploratory teaching" or "move-testing teaching" to address the emerging problems during their teaching. They then reflected on and modified their own teaching. This type of change, which happened during the teaching practice, can be an example of "Reflection-in-practice." Thus, the results of this study can provide helpful insights into how teachers might adapt and reflect in their teaching. It suggests that teachers need to recognize their subconscious teaching changes and learn "Reflection-in-practice."

  • PDF

Test Equipment and Test Portfolio for Education of Strain and Vibration Measurements (변형률 및 진동 측정 교육을 위한 실험 장치와 실험 포트폴리오)

  • Yang, Jimin;Lee, Dooyoul
    • Journal of Practical Engineering Education
    • /
    • v.13 no.3
    • /
    • pp.497-505
    • /
    • 2021
  • Test equipment for strain and vibration measurement was designed for educational purposes. Widely available and affordable materials were put into making this device. Three strain gauges placed on an iron ruler made cantilevered beam were used to measure values according to external load. An electromagnet triggered excitation and a function generator created vibration of the beam. We present three different tests conducted with this equipment regarding production of scales, measurement of resonant frequency, and calculation of the difference between excitation frequency and measured frequency. Overall, this paper presents a piece of simple yet inexpensive test equipment and its corresponding portfolio with expectations of being applied to the educational field for efficient measurement of load and vibration.

Instructor Fostering Program for Farmers' Water Saving Education (농민 물절약 교육을 위한 전문인력 양성교육 실시)

  • Lee, Seul Gi;Choi, Kyung Sook;Do, Jong Won;Lee, Gwang Ya
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.56-56
    • /
    • 2019
  • 우리나라는 최근 기후변화로 인하여 가뭄의 빈도와 강도가 점점 증가하고 있는 추세이며, 이에 따른 농업가뭄 현상은 매년 발생하고 있는 실정이다. 2000년 이후부터 무상으로 공급되고 있는 농업용수에 대해 농민 물이용 손실을 저감하고, 물부족에 대비한 선제적인 가뭄대응의 일환으로 물절약 교육 및 홍보를 통한 농민 물절약의 중요성 인식으로 2015년에 "농업농촌부문 가뭄대응 종합대책"에 농민 절수교육 및 홍보를 통한 물절약 추진 과제가 포함되었다. 농민 물절약 교육을 통한 농민의 가뭄에 대한 경각심과 물절약 실천의 중요성을 인식시키고, 농업인의 자발적인 물절약 실천을 통한 효율적 수자원 이용을 도모하는데 그 의의가 있다. 이에 따라 2016년 농민 물절약교육 모델이 개발되었으며, 2017년에는 물절약 교육 모델의 현장적용을 위한 시범교육이 실시되었다. 또한 "2018년 정부 가뭄종합대책" 중 가뭄대책 실천의 일환으로 물절약 교육 및 홍보실시 확대 추진을 위해 2018년도에는 2016년과 2017년에 실시한 농민 물절약 시범교육을 바탕으로 물절약 교육 모델의 실용화를 위한 농민 물절약 교육 전문인력 양성을 실시하였다. 본 연구에서 진행한 물절약 교육 전문인력 양성 프로그램은 농업용수의 물공급 및 관리기관인 한국농어촌공사 지사단위 유지관리 직원을 대상으로 하였으며, 전국적으로 경기 강원권, 충청권, 호남권, 경상 제주권의 4개 권역으로 나누어 상 하반기 교육을 실시하여 총 322명의 교육인력을 양성하였다. 전문인력양성 교육은 물절약 교육에 대한 전반적인 이해와 현장적용을 위해 농민 물절약 교육 이수단계별교육 내용 및 교육 방법을 이해하고, 각 단계별 교육을 직접 실습해 보는 시간으로 구성하였다. 교육 이수 후에는 교육생의 학습에 대한 이해도 및 교육 만족도를 조사하고 기타 교육에 대한 의견수렴을 위해 설문조사를 실시하였다. 그 결과, 교육생의 대부분이 농민 대상 물절약 교육의 필요성을 매우 공감하는 것으로 나타났으며, 물절약 교육의 지속적인 실천 및 전국적인 확대를 위해 별도의 예산 및 인력지원의 필요성을 강조하였다. 교육과정을 완료 후에는 수료증을 수여하였으며, 본 연구에서 개발한 물절약 교육의 현장적용을 위한 물절약 교육 강사용 교재를 배포함으로 본 교육을 이수한 전문인력의 농민 물절약 교육에 활용하도록 하였다.

  • PDF