• Title/Summary/Keyword: 과학 탐구 중심 수업

Search Result 168, Processing Time 0.031 seconds

Theoretical Investigation on Implications of 'Community of Inquiry' for Science Education: Toward 'Community of Inquiry in Science Classroom' ('탐구공동체'의 과학 교육적 함의에 대한 이론적 고찰 : '과학 교실 탐구공동체'를 향해서)

  • Joung, Yong Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.3
    • /
    • pp.303-319
    • /
    • 2014
  • The purpose of this study is to investigate theoretically the meaning and features of the Community of Inquiry (CoI) based on the views of Peirce and Dewey, and to explore the implications of CoI in science education. The meaning and features of CoI are: (a) inquiry in CoI is initiated with faithful doubt; (b) inquiry in CoI finishes with faithful belief; (c) inquiry in CoI attempts to find out the best explanation and solution regarding the practical effects of objects; (d) as an ideal community, CoI is required to be one that inquires continuously without definite limits; (e) as an actual community, CoI requires its members' open communication to find the best explanation and solution. Based on these features of CoI, the Community of Inquiry in Science Classroom (CoI-SC), "the classroom community for the purpose of transforming the state of faithful doubt into the state of faithful belief, in relation to natural phenomena or objects, and where the members share objectives as participants continuously attempt to find out the best explanation and solution by open communication, considering fallibility and the practical effects of objects", was suggested. The condition for implementation of the CoI-SC, "'interest', 'openness', 'rigor', 'fallibilism', 'participation', 'inquiry without definite limits'", were also suggested. Finally, several suggestions for the science curriculum were given.

Research on Ways to Improve Science Teaching Methods to Develop Students' Key Competencies (학습자의 핵심역량 개발을 위한 과학과 수업방법 개선 방안)

  • Kwak, Youngsun
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.5
    • /
    • pp.855-865
    • /
    • 2012
  • The goal of this research is to investigate ways to improve science teaching methods to develop students' key competencies. Since the OECD DeSeCo (Definition and Selection of Key Competencies) project, key competencies are redefined as 'what people should know and be able to do in order to lead a successful life in a well-functioning society, which leads many countries to emphasize competency-based curriculum. In this research, we collected and analyzed foreign and domestic classroom cases that have implemented competency-based curriculum in science teaching. Through open-ended interviews with the teachers and principals, we explored ways to improve science teaching methods to develop students' key competencies. In foreign cases, science teachers emphasized students' knowing what KCs to accomplish, activities and student-centered learning, students' group activities and collaboration, and greater curriculum integration among subjects and contexts. Korean science teachers argued that the KCs should be realized through teaching methods and emphasized scientific inquiry learning whereby non-science track students could also benefit from science lessons. Korean science teachers also emphasized links to real-life situations, providing students with various learning experiences that supported students to develop the KCs, and the delivery of an integrated curriculum. In the conclusion section, the difficulties with the implementation of key competencies are discussed.

An Exploration of Science Teachers' NOS-PCK: Focus on Science Inquiry Experiment (과학교사의 과학의 본성 수업에 대한 교과교육학 지식(NOS-PCK) 탐색 -과학탐구실험을 중심으로-)

  • Kim, Minhwan;Shin, Haemin;Noh, Taehee
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.4
    • /
    • pp.399-413
    • /
    • 2020
  • In this study, we analyzed science teachers' NOS-PCK in Science Inquiry Experiment lessons. Four science teachers in charge of Science Inquiry Experiment in high schools located in the Seoul metropolitan area participated in the study. NOS Lessons were observed, all of the teaching-learning materials were collected, and semi-structured interviews were conducted. All the collected data were analyzed according to five factors of NOS-PCK. As a result of the study, their understanding and consideration of the curriculum related to NOS were insufficient in some cases. They thought that given inquiry activities or textbook composition was not effective for NOS teaching so that they actively reconstructed the curriculum. In terms of teaching strategies, their lessons were close to explicit approaches. However reflective approaches were generally lacking. They were neglected in evaluating NOS for reasons that views of NOS are individually subjective or that NOS is not an area of cognitive learning. They guessed the state of students by relying on their own experiences rather than based on evaluation results. They recognized a specific aspect of values of NOS learning. And intention to teach NOS played an important role throughout their classes. Based on the above results, we discuss some ways to improve the professionalism of science teachers for NOS teaching.

Orientation toward Teaching of Science Teachers Showed in Lesson on Law of Definite Composition in Middle School and the Factors Which Influenced Its Formation (중학교 일정성분비의 법칙 수업에서 나타난 과학교사의 교수지향과 그의 형성에 영향을 준 요인)

  • Kim, Jin-Hee;Choi, Byung-Soon
    • Journal of Science Education
    • /
    • v.38 no.1
    • /
    • pp.103-119
    • /
    • 2014
  • The purpose of this study was to investigate orientation toward teaching of science teachers had shown in lesson on Law of Definite Composition for middle school students and the factors which influenced its formation. To achieve this, we collected survey materials by recording and analyzing lessons of 8 teachers, interviewing them, and using CoRe questionnaire. From teachers' activities in lessons, we found their orientation toward science teaching, and through analyzing collected materials, drew the factors which influenced the formation of orientation toward science teaching. The result identified two types of orientation toward science teaching: activity-directional and lecture-directional. The former, activity-directional was categorized further as exploration and non-exploration; the latter as interaction-centered and content delivery. The main factors which affected the formation of orientation toward science teaching were reflective thinking through teaching experiences, interaction with colleagues, consideration on education environment, training as a learner, and their own interest and curiosity. Among them, the reflective thinking through teaching experiences was strongest cause, and teacher's interest and curiosity was even limited, also influenced positively. On the other hand, unlikely other factors, consideration on education setting affected negatively to build teacher's teaching orientation. Interaction with colleagues, training for teachers by universities and graduated schools acted on a bit, but had a limit just for mainly developing science content knowledge.

  • PDF

Korean Science Teachers' Perceptions in PISA Survey: Focusing on Comparison with the United States and China (PISA 설문에서 나타난 한국 과학교사들의 인식: 미국, 중국과 비교를 중심으로)

  • Kim, Hyunjung
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.1
    • /
    • pp.31-41
    • /
    • 2022
  • The purpose of this study is to draw implications for future Korean science education by analyzing the PISA 2015 science teacher questionnaire. To this end, descriptive statistics and difference tests were conducted for each questionnaire item, using raw data from science teacher surveys in Korea, the United States, and China. As a result of the analysis, first, the perception that Korean science teachers should participate in professional development activities was lower than that of comparative countries, and it was found that improvement was needed in the practice of adaptive instruction and various evaluation methods. Second, although Korean science teachers were generally satisfied with their jobs, the response that they were hindered in science education activities due to limitations in various resources at their current school was relatively higher than that of comparative countries. Third, scientific inquiry was less emphasized in science curriculum and science class in Korea, and self-efficacy in inquiry teaching process was relatively low. Fourth, in Korea, it was found that there were fewer classes for discussion and using ICT in science classes.

Exploration of High School Science Teachers' Perceptions on Instruction and Assessment of Science Elective Courses in the 2015 Revised Curriculum (2015개정 과학과 선택과목 수업 및 평가에 대한 교사들의 인식 탐색)

  • Kwak, Youngsun;Lee, Il
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.3
    • /
    • pp.183-192
    • /
    • 2021
  • As part of the second-year monitoring study on the implementation of the 2015 revised science curriculum, this study investigated high school science teachers' perception and realization of instruction and assessment of elective courses to derive measures to settle and improve the science curriculum. A total of 244 high school science teachers responded to the survey questionnaire, and 9 teachers participated in interviews. In survey results, science teachers are contemplating ways to increase students' science competencies and their participation in classes, but still, lecture-oriented classes are most often used in their teaching. Regarding assessment, teachers responded that there were positive changes in all of the questions related to process-based assessment (PBA). Regarding the difficulty of managing science elective courses, teachers most often selected increased numbers of subjects being covered, overload of work, and the burden of restructuring classes considering various ways of teaching and assessment. Through in-depth interviews, teachers argued the difficulty for Science I courses to emphasize student participatory classes compared to integrated science, and the difficulty to implement student participatory classes for Science II courses, which are mainly placed in the third grade. Teachers also argue that it is necessary to secure time to implement PBA in science elective courses, and that there is no need to implement PBA for the science experiment since there are no tests on the SAT. Based on the results of the study, discussed in the conclusion are support plans for the settlement of PBA in elective courses, and the need for in-depth analysis of the direction and cause of student participatory classes and PBA at the school.

Application Effects of Biology Modules for Improving Science High School Students' Creativity and Scientific Thinking (과학고 학생들의 창의력과 과학적 사고력 향상을 위한 생물 실험 모듈의 적용 효과)

  • Yoon, Deog-Geun;Kim, Sung-Ha;Cha, Hee-Young;Lee, Kil-Jae;Chung, Wan-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.3
    • /
    • pp.556-564
    • /
    • 2004
  • Two biology modules were developed previously for the purpose of improving creativity and scientific thinking of secondary school students. A hypothetical-deductive experimental procedure was reflected in the module when students themselves can perform a series of activities of making hypothesis and designing an experiment to solve the questions. They followed a series of scientific processes to determine some characteristics regarding plant pigments and the transport process of materials in living organisms. Four classes of 9th graders in'S' Science High School were divided into the experimental and the control group. The same contents of the modules were taught to the control group by the traditional experimental way. The students' creativity, scientific thinking, scientific inquiry skill and knowledge achievement were examined before and after the interventions. As results, the experimental groups showed more significant improvement on the areas of the students' creativity, scientific thinking, scientific inquiry skill and achievement than the control groups. Results indicated that the specially designed modules in terms of hypothetical-deductive experimental procedure were effective to improve science high school students' creativity and scientific thinking abilities.

Exploring How a High School Science Teacher's Understanding and Facilitation of Scientific Modeling Shifted through Participation in a Professional Learning Community (교사학습공동체에 참여한 한 고등학교 교사의 과학적 모델링에 대한 이해 및 수업 실행 변화 탐색 -프레임 분석을 중심으로-)

  • Shim, Soo-Yean
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.1
    • /
    • pp.29-40
    • /
    • 2020
  • The purpose of this study is to explore how a high school science teacher (Teacher E) shifted her understanding and facilitation of scientific modeling through participation in a professional learning community (PLC) for over a year. Based on socially situated theory of learning, I focused on examining Teacher E's frames about scientific modeling from her social interactions. Teacher E participated in her school-based PLC over a year and collaborated with other science teachers, coaches, and researchers to improve science instruction. I qualitatively explored her participation in 6 full-day professional learning opportunities-studios-where the PLC members collectively planned, implemented, and debriefed modeling-based lessons. Especially, I focused on two Studios (Studio 2, 6) where Teacher E became the host teacher and implemented the lessons. I also examined her classroom teaching in those Studios. To understand how the PLC inquiry affected the shifts observed in Teacher E's understanding and practice, I explored how the inquiry evolved over the 6 Studios. Findings suggest that in Studio 2, Teacher E viewed students' role in scientific modeling as to fill out the worksheet with "correct" answers. Meanwhile, in Studio 6, she focused on helping students collaborate to construct explanatory models of phenomena using evidence. The PLC inquiry, focused on supporting students' construction of evidence-based explanations and collaboration in scientific modeling, seemed to promote the shifts observed in Teacher E's understanding and facilitation of scientific modeling. These findings can inform educational researchers and practitioners who aim to promote teachers' professional learning to support students' epistemic practices.

Development and Formative Evaluation of Simulation Contents for Scientific Exploration based on NetLogo (NetLogo 기반의 과학탐구용 시뮬레이션 콘텐츠 개발 및 형성평가)

  • Woo, Jeonghoon;Jun, Youngcook
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.2
    • /
    • pp.65-76
    • /
    • 2014
  • This paper aims at implementing experimental devices with which middle school students can explore scientific ideas using GoGo Board and NetLogo that connect real and simulated worlds. Related research literature was reviewed to design a simulation-based learning model using computer simulation and robot-related activities. In order to construct devices for exploratory experiments, GoGo Board was adopted for developing the interface of Micro-Based Laboratory(MBL) devices with several sensors while NetLogo was used for connecting MBL devices (real world) and simulated experiments (virtual world). The simulation contents were developed in the area of heat equilibrium for changing temperature and the conduct-current relationship appeared in the textbook of middle school science class. With the developed device and contents students can visualize the change of temperature cold and hot waters in terms of heat equilibrium. They also can measure the change of conductor representing the relationship between conductor and current. The formative evaluation of the contents carried out with several middle school students indicated the future direction for upgrading simulation contents and interface. The results might be beneficial for science educators who want to apply simulation contents with the use of computers.

  • PDF